Where there's wildfire smoke, there's toxicity

Nov 20, 2008
Smoke from wildfires on distant inland hills pours over the ocean at Venice Beach, Calif., Nov. 16. Credit: Viterbi School of Engineering

The health threat to city dwellers posed by Southern California wildfires like those of November 2008 may have been underestimated by officials.

Detailed particulate analysis of the smoke produced by previous California wild fires indicates that the composition posed more serious potential threats to health than is generally realized, according to a new paper analyzing particulate matter (PM) from wildfires in Southern California.

The paper, entitled "Physicochemical and Toxicological Profile of Particulate Matter (PM) in Los Angeles during the October 2007 Southern California Wildfires," will appear in Environmental Science and Technology. It confirms earlier studies by air polllution specialist Constantinos Sioutas of the USC Viterbi School of Engineering, who is also co-director of the Southern California Particle Center.

For the study Sioutas and colleagues from USC, the University of Wisconsin-Madison and RIVM (the National Institute of Health and the Environment of the Netherlands) analyzed the particular matter gathered during the fall 2007 blazes.

"Fire emissions produce a significantly larger aerosol in size than typically seen in urban environments during periods affected by traffic sources, which emit mostly ultrafine particles," Sioutas said.

"Staying indoors may not provide protection from smoke particles in the absence of air conditioning or the ability to recirculate filtered indoor air. This is because the fire particles can penetrate indoor structures more readily than particles from vehicular emissions."

According to Sioutas, the fires produce a dangerous mix. "The chemical composition of particles during the fire episodes is different than that during 'normal' days impacted by traffic sources.

"Tracers of biomass burning (e.g. potassium and levoglucosan) were elevated by two-fold during the fire periodm" he said. "Water-soluble organic carbon (WSOC) was also higher during the fire event. This makes these particles from wood smoke more bioavailable, thus more readily absorbable by our system than particulate matter from traffic sources."

The ability of the particulates to penetrate structures, even if windows are closed, and their potential ability to be absorbed by human tissues are a matter of concern. "More aggressive measures to avoid smoke seem to deserve study, including distribution of masks and evacuation to air conditioned environments, and closure of non-smoke secured schools," said Sioutas, who holds the school's Fred Champion Professorship of Civil and Environmental Engineering.

Source: University of Southern California

Explore further: Australia takes the next step in the fight against ocean plastic pollution

add to favorites email to friend print save as pdf

Related Stories

MasterCard, Zwipe announce fingerprint-sensor card

7 hours ago

On Friday, MasterCard and Oslo, Norway-based Zwipe announced the launch of a contactless payment card featuring an integrated fingerprint sensor. Say goodbye to PINs. This card, they said, is the world's ...

Plastic nanoparticles also harm freshwater organisms

9 hours ago

Organisms can be negatively affected by plastic nanoparticles, not just in the seas and oceans but in freshwater bodies too. These particles slow the growth of algae, cause deformities in water fleas and impede communication ...

Atomic trigger shatters mystery of how glass deforms

9 hours ago

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

US company sells out of Ebola toys

17 hours ago

They might look tasteless, but satisfied customers dub them cute and adorable. Ebola-themed toys have proved such a hit that one US-based company has sold out.

Recommended for you

Research team studies 'regime shifts' in ecosystems

1 hour ago

The prehistory of major ecological shifts spanning multiple millennia can be read in the fine print of microscopic algae, according to a new study led by researchers at the University of Nebraska-Lincoln.

New policymaking tool for shift to renewable energy

5 hours ago

Multiple pathways exist to a low greenhouse gas future, all involving increased efficiency and a dramatic shift in energy supply away from fossil fuels. A new tool 'SWITCH' enables policymakers and planners to assess the ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

GrayMouser
5 / 5 (1) Nov 20, 2008
It's natural, how can it be toxic?