Scientists create tiny backpacks for cells

Nov 05, 2008 By Anne Trafton
MIT researchers have developed a technique to attach tiny polymer "backpacks" to cells. This immune system cells, a B lymphocyte sports one. The scale bar is 10 micrometers. Image courtesy / American Chemical Society

(PhysOrg.com) -- MIT engineers have outfitted cells with tiny “backpacks” that could allow them to deliver chemotherapy agents, diagnose tumors or become building blocks for tissue engineering.

Michael Rubner, director of MIT’s Center for Materials Science and Engineering and senior author of a paper on the work that appeared online in Nano Letters on Nov. 5, said he believes this is the first time anyone has attached such a synthetic patch to a cell.

The polymer backpacks allow researchers to use cells to ferry tiny cargoes and manipulate their movements using magnetic fields. Since each patch covers only a small portion of the cell surface, it does not interfere with the cell’s normal functions or prevent it from interacting with the external environment.

“The goal is to perturb the cell as little as possible,” said Robert Cohen, the St. Laurent Professor of Chemical Engineering at MIT and an author of the paper.

The researchers worked with B and T cells, two types of immune cells that can home to various tissues in the body, including tumors, infection sites, and lymphoid tissues — a trait that could be exploited to achieve targeted drug or vaccine delivery.

“The idea is that we use cells as vectors to carry materials to tumors, infection sites or other tissue sites,” said Darrell Irvine, an author of the paper and associate professor of materials science and engineering and biological engineering.

Cellular backpacks carrying chemotherapy agents could target tumor cells, while cells equipped with patches carrying imaging agents could help identify tumors by binding to protein markers expressed by cancer cells.

Another possible application is in tissue engineering. Patches could be designed that allow researchers to align cells in a certain pattern, eliminating the need for a tissue scaffold.

The polymer patch system consists of three layers, each with a different function, stacked onto a surface. The bottom layer tethers the polymer to the surface, the middle layer contains the payload, and the top layer serves as a “hook” that catches and binds cells.

Once the layers are set up, cells enter the system and flow across the surface, getting stuck on the polymer hooks. The patch is then detached from the surface by simply lowering the temperature, and the cells float away, with backpacks attached.

“The rest of the cell is untouched and able to interact with the environment,” said Albert Swiston, lead author of the paper and a graduate student in materials science and engineering.

The researchers found that T cells with backpacks were able to perform their normal functions, including migrating across a surface, just as they would without anything attached.

By loading the backpacks with magnetic nanoparticles, the researchers can control the cells’ movement with a magnetic field.

Because the polymer synthesis and assembly takes place before the patches are attached to cells, there is plenty of opportunity to tweak the process to improve the polymers’ effectiveness and ensure they won’t be toxic to cells, the researchers say.

Other authors of the paper are Soong Ho Um, a postdoctoral associate in the Departments of Materials Science and Engineering and Biological Engineering, and Connie Cheng, a recent Harvard graduate.

The research was funded by the National Science Foundation Materials Research Science and Engineering Center and an NSF Graduate Research Fellowship.

Provided by NIT

Explore further: Improving printed electronics process and device characterization

add to favorites email to friend print save as pdf

Related Stories

Protein glue shows potential for use with biomaterials

Aug 28, 2014

Researchers at the University of Milan in Italy have shown that a synthetic protein called AGMA1 has the potential to promote the adhesion of brain cells in a laboratory setting. This could prove helpful ...

New type of cell movement discovered

Aug 28, 2014

For decades, researchers have used petri dishes to study cell movement. These classic tissue culture tools, however, only permit two-dimensional movement, very different from the three-dimensional movements ...

Recommended for you

Tiny graphene drum could form future quantum memory

Aug 28, 2014

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

Graphene reinvents the future

Aug 27, 2014

For many scientists, the discovery of one-atom-thick sheets of graphene is hugely significant, something with the potential to affect just about every aspect of human activity and endeavour.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

bmcghie
not rated yet Nov 05, 2008
picture picture picture please! :) Sounds awesome. I would love to know how big, relative to common lymphocytes, these backpacks are. They say it doesn't impede movement... but what about diapedesis?
ajs
not rated yet Nov 06, 2008
We can adjust the size using the lithography step, and using the current technique can get down to ~7micron diameter backpacks. There should be images posted to the MIT News site soon...