The inaudible symphony analyzed

Nov 03, 2008

By measuring 'inaudible' sounds, events like illegal nuclear tests can be detected. This 'infrasound' can also help us understand more about the upper atmosphere, according to Läslo Evers. Evers will receive a PhD based on his research into this subject at Delft University of Technology (TU Delft) on Tuesday 4 November 2008.

Sound with a frequency below 20 Hz is inaudible to human ears. Scientists' ears, however, are very interested in this 'infrasound'. Sources of infrasound are often large and powerful, like meteors, explosions, ocean waves, storms, volcanoes, avalanches, earthquakes and nuclear tests.

Infrasound is measured with arrays (series) of highly sensitive microbarometers. TU Delft PhD student Läslo Evers, who works at the Royal Netherlands Meteorological Institute (KNMI), has improved the entire process of measuring, analysing and interpreting infrasound. The big challenge is to separate sounds from one other and to identify their sources.

Nuclear Test Ban Treaty

Large explosions in the vicinity are easy to recognise, for example the explosion of a fuel depot near London in 2005. At home, Evers saw a huge peak above the noise on his computer screen. He knew immediately that something big had happened in England.

But the main purpose of his work is the detection of above-ground nuclear tests. KNMI helps to enforce the Comprehensive Nuclear Test Ban Treaty of 1996, which prohibits signatories from testing nuclear devices. Dozens of microbarometers have been set up on five sites in the Netherlands.

More research

To further refine the analyses, we need to know more about the interaction between the earth's atmosphere and infrasound. The temperatures and wind speeds at an altitude of fifty to a hundred kilometres can cause distortion.

This analysis process can also be turned around. Evers wants to use information gleaned from infrasound to map the upper atmosphere more accurately. He is planning to conduct research in this field together with the Department of Acoustic Remote Sensing of the Faculty of Aerospace Engineering at TU Delft.

Source: Delft University of Technology

Explore further: Tricorder XPRIZE: 10 teams advance in global competition to develop consumer-focused diagnostic device

add to favorites email to friend print save as pdf

Related Stories

FIXD tells car drivers via smartphone what is wrong

48 minutes ago

A key source of anxiety while driving solo, when even a bothersome back-seat driver's comments would have made you listen: the "check engine" light is on but you do not feel, smell or see anything wrong. ...

Team pioneers strategy for creating new materials

1 hour ago

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Shell files new plan to drill in Arctic

2 hours ago

Royal Dutch Shell has submitted a new plan for drilling in the Arctic offshore Alaska, more than one year after halting its program following several embarrassing mishaps.

Aging Africa

2 hours ago

In the September issue of GSA Today, Paul Bierman of the University of Vermont–Burlington and colleagues present a cosmogenic view of erosion, relief generation, and the age of faulting in southernmost Africa ...

Recommended for you

Augmented reality helps in industrial troubleshooting

Aug 28, 2014

At a "smart" factory, machines reveal a number of data about themselves. Sensors measuring temperature, rotating speed or vibrations provide valuable information on the state of a machine. On this basis, ...

User comments : 0