A glacier's life

Oct 29, 2008

EPFL researchers have developed a numerical model that can re-create the state of Switzerland's Rhône Glacier as it was in 1874 and predict its evolution until the year 2100. This is the longest period of time ever modeled in the life of a glacier, involving complex data analysis and mathematical techniques.

The work will serve as a benchmark study for those interested in the state of glaciers and their relation to climate change.

The Laboratory of Hydraulics, Hydrology and Glaciology at ETH Zurich has been a repository for temperature, rainfall and flow data on the Rhône Glacier since the 1800s. Researchers there have used this data to reconstruct the glacier's mass balance, i.e. the difference between the amount of ice it accumulates over the winter and the amount that melts during the summer(see 1 below). Now, led by professor Jacques Rappaz from EPFL's Numerical Analysis and Simulations group, a team of mathematicians has taken the next step, using all this information to create a numerical model of glacier evolution, which they have used to simulate the history and predict the future of Switzerland's enormous Rhone glacier over a 226-year period.

The mathematicians developed their model using three possible future climate scenarios. "We took the most moderate one, avoiding extremely optimistic or pessimistic scenarios," explains PhD student Guillaume Jouvet. With a temperature increase of 3.6 degrees Celsius and a decrease in rainfall of 6% over a century, the glacier's "equilibrium line", or the transition from the snowfall accumulation zone to the melting zone (currently situated at an altitude of around 3000 meters), rose significantly. According to this same scenario, the simulation anticipates a loss of 50% of the volume by 2060 and forecasts the complete disapearance of the Rhône glacier around 2100.

"It is the first time that the evolution of a glacier has been numerically simulated over such a long period of time, taking into account very complex data," notes EPFL mathematician Marco Picasso. Even though measurements have been taken for quite some time, the sophisticated numerical techniques that were needed to analyze them have only been developed very recently.

To verify their results, the mathematicians have also reconstructed a long-vanished glacier in Eastern Switzerland. They were able to pinpoint the 10,000-year-old equilibrium line from vestiges of moraines that still exist (see 2 below).

The scientists' work will be of interest not only to climate change experts, but also to those to whom glaciers are important – from tourism professionals to hydroelectric energy suppliers. Picasso adds that this numerical model could be applied to the polar icecaps. "Mathematics and numerical methods have an important role to play in our society," he enthuses. "They allow us to simulate with great confidence a large number of environmental phenomena."

This research, conducted by the team in Zurich was published in 2008 in the Journal of Geophysical Research.

Source: Ecole Polytechnique Fédérale de Lausanne

Explore further: Giant garbage patches help redefine ocean boundaries

add to favorites email to friend print save as pdf

Related Stories

New ichthyosaur graveyard found

Jun 03, 2014

In a new study published in the Geological Society of America Bulletin, geoscientists Wolfgang Stinnesbeck of the University of Heidelberg and colleagues document the discovery of forty-six ophthalmosaurid ichthyosaurs (marin ...

Image: Orbital view of Mount Huascarán, Peru

May 16, 2014

The snow-capped mountains running through the centre of this satellite image are part of the Cordillera Blanca – or 'white range' – in South America's Andes. Even though they are part of the typically ...

Earth's last warm phase exposed

May 02, 2014

Analysis of data collected from ice cores and marine sediment cores in both polar regions has given scientists a clearer picture of how the Earth's climate changed during the last Interglacial period. This ...

Exxon Valdez Runs Aground in 1989

Mar 24, 2014

Early on March 24, 1989, Dean Fosdick, the Alaska bureau chief of The Associated Press, was awakened around 5:30 a.m. by a phone call. The caller had a tip that a tanker had run aground outside Valdez.

Recommended for you

Giant garbage patches help redefine ocean boundaries

4 minutes ago

The Great Pacific Garbage Patch is an area of environmental concern between Hawaii and California where the ocean surface is marred by scattered pieces of plastic, which outweigh plankton in that part of ...

New satellite maps out Napa Valley earthquake

1 hour ago

Scientists have used a new Earth-observation satellite called Sentinel-1A to map the ground movements caused by the earthquake that shook up California's wine-producing Napa Valley on 24 August 2014.

Rainfall monitoring with mobile phones

1 hour ago

Agriculture, water resource management, drought and flood warnings, etc.: rainfall monitoring is vital in many areas. But the observation networks remain insufficient. This is not the case for antennas for ...

Seismic hazards reassessed in the Andes

1 hour ago

Although being able to predict the date on which the next big earthquake will occur is still some way off becoming a reality, it is now possible to identify the areas where they will occur. IRD researchers ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

GrayMouser
5 / 5 (2) Oct 29, 2008
Why would a 3.6 degree increase in temperature coincide with a 6% decrease in rainfall for 100 years?

The initial decisions they make determine the final outcome. They could do 10000 scenarios where they change the temperature slightly or the rainfall slightly without ever having the model tell them anything.