The slow-spin zone at the core of the sun

Oct 24, 2008

(PhysOrg.com) -- The dense, hot, radioactive core of the Sun rotates significantly more slowly than the layer next to it, the radiative zone, a Stanford solar physicist has concluded.

According to Peter Sturrock, professor emeritus of applied physics, the idea of a slower core has been hinted at before, but his paper published in the Astrophysical Journal provides for the first time a precise rotation rate. The core, he writes, spins round once every 28.4 days, whereas the radiative zone rotates once every 26.9 days, and the surface rotates faster still—once every 25.2 days.

Sturrock deduced from available observational data that the nuclear furnace of the core does not burn perfectly symmetrically. There appears to be a localized "hot spot" in the core that affects the Sun's neutrino flux and its surface brightness as the core rotates.

Sturrock came to his conclusions after mathematical analysis of the data from the ACRIM space experiment that monitors the total radiation from the sun, and from two neutrino observatories, one in the Homestake Mine in South Dakota and the other (the GALLEX experiment) in the Gran Sasso mountain in Italy. He found precisely the same regular "flashing" in the two sets of neutrino data, and the two corresponding sets of irradiance measurements. "It is like watching the light on a police car—you see a flash every time it comes around," he said. The rate of flashing is actually the rate of rotation.

Sturrock compared this research, which involves combining data from four different datasets, to listing to a quartet: "You get a lot more out of listening to all four instruments playing at the same time than you do to listening to them one by one."

In a separate study reported in the same article, Sturrock found that measurements from the Super-Kamiokande experiment in Japan show a different kind of variability, one that is best understood in terms of the sun's internal magnetic field. This result is significant for neutrino physics, since it implies that—in addition to their known spin—neutrinos have a nonzero magnetic moment.

Sturrock's work was supported by the National Science Foundation.

Link: www.journals.uchicago.edu/toc/apj/current

Provided by Stanford University

Explore further: Can astronomy explain the biblical Star of Bethlehem?

add to favorites email to friend print save as pdf

Related Stories

New system could predict solar flares, give advance warning

Aug 13, 2012

(Phys.org) -- Researchers may have discovered a new method to predict solar flares more than a day before they occur, providing advance warning to help protect satellites, power grids and astronauts from potentially dangerous ...

The strange case of solar flares and radioactive elements

Aug 23, 2010

(PhysOrg.com) -- When researchers found an unusual linkage between solar flares and the inner life of radioactive elements on Earth, it touched off a scientific detective investigation that could end up protecting the lives ...

Recommended for you

Can astronomy explain the biblical Star of Bethlehem?

Dec 24, 2014

Bright stars top Christmas trees in Christian homes around much of the world. The faithful sing about the Star of Wonder that guided the wise men to a manger in the little town of Bethlehem, where Jesus was ...

Hubbles spies the beautiful galaxy IC 335

Dec 24, 2014

This new NASA/ESA Hubble Space Telescope image shows the galaxy IC 335 in front of a backdrop of distant galaxies. IC 335 is part of a galaxy group containing three other galaxies, and located in the Fornax ...

Image: Multicoloured view of supernova remnant

Dec 22, 2014

Most celestial events unfold over thousands of years or more, making it impossible to follow their evolution on human timescales. Supernovas are notable exceptions, the powerful stellar explosions that make ...

Ultra-luminous X-ray sources in starburst galaxies

Dec 22, 2014

Ultra-luminous X-ray sources (ULXs) are point sources in the sky that are so bright in X-rays that each emits more radiation than a million suns emit at all wavelengths. ULXs are rare. Most galaxies (including ...

When a bright light fades

Dec 22, 2014

Astronomer Charles Telesco is primarily interested in the creation of planets and stars. So, when the University of Florida's giant telescope was pointed at a star undergoing a magnificent and explosive death, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

barakn
4 / 5 (5) Oct 24, 2008
Since it takes millions of years for energy to work its way from the core to the surface, I'm quite surprised there's a close correlation between the total radiance and the neutrinos (which make it out in a couple seconds). Presumably the increase in radiance is due to neutrinos interacting with matter near the sun's surface.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.