Young stellar objects: The source of gas emission around Herbig Ae/Be stars

Oct 10, 2008

This week, Astronomy & Astrophysics is publishing new observations with AMBER/VLTI of the gas component in the vicinity of young stars. An international team of astronomers led by E. Tatulli (Grenoble, France) and S. Kraus (Bonn, Germany) used the unique capability of the VLT near-infrared interferometer, coupled with spectroscopy, to probe the gaseous environment of Herbig Ae/Be stars. These are young stars of intermediate mass (approximately 2 to 10 solar masses), which are still contracting and often show strong line emissions.

In recent years, young stars have been widely studied with near-infrared interferometers, allowing astronomers to study their close environment with high spatial resolution (see for example the A&A special feature on AMBER/VLTI first results, published in March 2007). So far, near-infrared interferometry has been used mostly to probe the dust that closely surrounds young stellar objects.

However, dust is only 1% of the total mass of protoplanetary disks, while gas is their main component (99%) and may be responsible for the structure of forming planetary disks. High-resolution observations of emission spectral lines are then required to trace this gaseous component. Various processes have been proposed as the source of emission lines. For example, they might come from an accreting gaseous inner disk or might be due to either magnetospheric accretion processes or to a stellar wind. Most of these processes would take place close to the star (less than 1 AU), and are therefore not accessible with direct imaging facilities.

Using the capabilities of AMBER/VLTI, including milli-arcsecond spatial resolution, the team has now been able to trace the inner gaseous environment of six Herbig Ae/Be stars. They measured the geometry and position of the emitting regions surrounding these stars, for several diagnostic emission lines. For two Herbig Be stars, they find that the emission line is probably associated with mass infall; in one case (51 Ophiuchi), the emission line could originate within a dust-free hot gaseous disk. In the other one (HD 98922), the emitting region is very compact and might originate from magnetospheric accretion, through which the material is transported from the disk to the stellar surface. For the four other Herbig Ae/Be stars that have been observed, the emission line would be related to mass outflow, with gas lifted from the surface of a circumstellar disk and then ejected from the stellar system.

Until now, the origin of the gas emission from these young stars was still being debated, because in most earlier investigations of the gas component, the spatial resolution was not high enough to study the gas distribution close to the star. Applying the new high-resolution feature of the AMBER instrument to gas emission observations, the team was then able to show that the gas emission can distinctly trace the physical processes acting close to the star.

Source: Astronomy & Astrophysics

Explore further: What's the brightest star in the sky, past and future?

add to favorites email to friend print save as pdf

Related Stories

Dryers: Homes' energy guzzlers just got greener

Feb 18, 2015

For the first time in six years, Energy Star certification, a standard seal of approval for energy efficiency, has been expanded to include another major household appliance. 

Getting a grip on exotic atomic nuclei

Feb 18, 2015

A new model describing atomic nuclei, proposed by a physicist from the University of Warsaw Faculty of Physics, more accurately predicts the properties of various exotic isotopes that are created in supernova explosions or ...

Embryos of stars

Feb 16, 2015

Stars like the Sun begin their lives as cold, dense cores of dust and gas that gradually collapse under the influence of gravity until nuclear fusion is ignited. Exactly how the critical collapse process ...

Why does the Milky Way rotate?

Feb 11, 2015

We live in a galaxy that is called the Milky Way. It's called a barred spiral galaxy, which means that it has a spiral shape with a bar of stars across its middle. The galaxy is rather huge—at least 100,000 ...

Planck reveals the dynamic side of the Universe

Feb 11, 2015

The Planck collaboration, which includes the CNRS, the French Alternative Energies and Atomic Energy Commission (CEA), the French National Space Agency (CNES) and several French universities and institutions, ...

Recommended for you

Could the Milky Way become a quasar?

Feb 27, 2015

A quasar is what you get when a supermassive black hole is actively feeding on material at the core of a galaxy. The region around the black hole gets really hot and blasts out radiation that we can see billions ...

Galactic dinosaurs not extinct

Feb 27, 2015

One of the biggest mysteries in galaxy evolution is the fate of the compact massive galaxies that roamed the early Universe.

Stars found forming at Milky Way's outer edge

Feb 27, 2015

Brazilian astronomers said Friday they had found two star clusters forming in a remote part of our Milky Way galaxy where such a thing was previously thought impossible.

New insight found in black hole collisions

Feb 26, 2015

New research by an astrophysicist at The University of Texas at Dallas provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.