New knowledge about thermoelectric materials could give better energy efficiency

Oct 07, 2008

Thermoelectric materials can be assembled into units, which can transform the thermal difference to electrical energy or vice versa – electrical current to cooling. An effective utilization requires however that the material supplies a high voltage and has good electrical, but low thermal conductivity.

- The new knowledge explains exactly why some thermoelectric materials can have the desired low thermal conductivity without degrading the electrical properties. This can be crucial for the conversion of wasted heat, for example, from vehicle exhaust emissions. Leading car manufacturers are now working to develop this possibility and the first models are close to production. The technology is expected to give the cars considerably improved fuel economy, explains Bo B. Iversen, Professor at iNANO at the University of Århus. The new knowledge can also contribute to the development of new cooling methods, so that one avoids the most common, but very environmentally damaging greenhouse gas (R-134a). All of which is a gain for the environment.

In the Nature Materials article the researchers have studied one of the most promising thermoelectric materials in the group of clathrates, which create crystals full of 'nano-cages'.

"By placing a heavy atom in each nano-cage, we can reduce the crystals' ability to conduct heat. Until now we thought that it was the heavy atoms random movements in the cages that were the cause of the poor thermal conductivity, but this has been shown to not be true," explains Asger B. Abrahamsen, senior scientist at Risø-DTU.

The researchers have used the technique of neutron scattering, which gives them opportunity to look into the material and see the atoms' movements.

"Our data shows that, it is rather the atoms' shared pattern of movement that determines the properties of these thermoelectric materials. A discovery that will be significant for the design of new materials that utilize energy even better," explains Kim Lefmann, associate professor at the Nano-Science Center, the Niels Bohr Institute at the University of Copenhagen.

Source: University of Copenhagen

Explore further: Carbyne morphs when stretched: Calculations show carbon-atom chain would go metal to semiconductor

add to favorites email to friend print save as pdf

Related Stories

Water problems lead to riots, deaths in South Africa

53 minutes ago

Three babies who died from drinking tap water contaminated by sewage have become a tragic symbol of South Africa's struggle to cope with a flood of people into cities designed under apartheid to cater to ...

How Kindle Unlimited compares with Scribd, Oyster

13 hours ago

Amazon is the latest—and largest—company to offer unlimited e-books for a monthly fee. Here's how Kindle Unlimited, which Amazon announced Friday, compares with rivals Scribd and Oyster.

Recommended for you

PPPL studies plasma's role in synthesizing nanoparticles

15 hours ago

DOE's Princeton Plasma Physics Laboratory (PPPL) has received some $4.3 million of DOE Office of Science funding, over three years, to develop an increased understanding of the role of plasma in the synthesis ...

User comments : 0