Sensing the Energy: Calibrating the LCLS

Oct 01, 2008
The LCLS total energy sensor will sit directly in the X-ray beam during commissioning to help calibrate diagnostic equipment. Photo by Brad Plummer

The Linac Coherent Light Source will generate X-rays 10 billion times brighter than any source before it. Being the first of its kind, the LCLS has presented engineers with a number of unique technical hurdles. Measuring just how much punch the LCLS beam actually packs has proved especially challenging. But a team of LCLS scientists and engineers led by Stephan Friedrich at Lawrence Livermore National Laboratory has solved the problem with a tiny sensor designed to confront the beam head on.

The power contained in a single pulse from the LCLS is estimated to be in the neighborhood of a few billion watts—a tremendous amount to be sure. However, that power will be compressed into an unimaginably tiny sliver of time: around 100 femtoseconds, or one-tenth of a quadrillionth of a second. Because the pulses are so short, the total energy of the beam is relatively low, about 2 millijoules.

Despite their brevity, the momentary burst of X-rays still packs enough punch to instantaneously destroy most materials, a critical consideration for sensor design. Additionally, the sensor must be able to measure pulses at the full repetition rate of 120 per second.

Measuring X-ray beam power is typically a routine undertaking for X-ray physicists. At synchrotron labs, as with the LCLS, scientists prefer indirect measurements that don’t destroy the beam. These are usually accomplished with devices that absorb only a small part of the beam, which would otherwise taint sensitive experiments. One approach uses a device called an ionization chamber, in which the beam passes through a hollow cavity filled with a gas such as helium. The passing X-rays strip electrons from the helium atoms, generating a signal proportional to the beam energy, which gives scientists an indirect way to calculate the energy without disturbing the X-rays.

For an ionization chamber to work, researchers must first know how X-rays of different energies affect helium atoms. That has been well established in synchrotron labs. In the case of the LCLS, laser power of this magnitude has never been created. No one knows what exactly such a beam would do inside an ionization chamber.

Engineers have overcome this challenge with a new sensor that will measure the power directly by intercepting the beam. This will make the beam useless for doing science. However, the information will be used to calibrate diagnostic equipment—such as ionization chambers—during the commissioning phase of the LCLS, before scientists begin conducting experiments. Once commissioning is complete, the sensor will be retired in favor of indirect methods.

Directly calibrating ionization chambers first requires a device that can withstand the X-ray power. Friedrich's team solved the problem using a combination of commonly available materials, starting with a silicon wafer with a thermometer affixed to it. The silicon absorbs the X-rays, converts the energy to heat, and the onboard thermometer responds to that heat with a change in electrical resistance.

The device is mounted to a heat exchanger that cools the sensor back down within a few milliseconds, readying it for the next pulse. In this way, the new sensor can measure the full power of the LCLS running as designed at 120 pulses per second.

Friedrich says his team looked at a variety of different exotic materials that could withstand the X-rays, but settled on silicon because it has been thoroughly researched. "In a project like this, you don't want to reinvent the wheel," he said. "We wanted to work with a material that people have a lot of experience with and that lots of other smart people have thought about. Silicon is a great example."

Source: by Brad Plummer, SLAC

Explore further: Information storage for the next generation of plastic computers

add to favorites email to friend print save as pdf

Related Stories

Better thermal-imaging lens from waste sulfur

4 hours ago

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

5 hours ago

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Recommended for you

How to test the twin paradox without using a spaceship

Apr 16, 2014

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

superhuman
1 / 5 (1) Oct 02, 2008
Measuring just how much punch the LCLS beam actually packs has proved especially challenging.


Judging by the solution it wasn't that challenging.

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...