Sweat it out: Study examines ability of sweat patches to monitor bone loss

Oct 01, 2008

Some health assessments that are routinely carried out on Earth are not practical when the "patients" are free-floating astronauts on long space flights, such as missions to Mars or the Moon. A new, NASA-funded study from the University of Houston department of health and human performance will examine how well sweat patches the size of adhesive strips can detect levels of chemicals that may indicate bone loss.

"Current assessments involve blood tests, urine analysis or bone density scans, all of which are time-consuming, inconvenient to the working astronauts or, in the case of bone density scans, require large equipment that's not practical on a space station," said Mark Clarke, associate professor and principal investigator. "These patches are small, non-intrusive, and placed on the skin to collect a sweat sample. The sample is then analyzed for biomarkers of bone loss markers, such as calcium."

The three-year, $780,000 study will examine three types of sweat patches, each differing in the way the sweat is collected and extracted from the devices. One device collects the sweat between the skin and a plastic layer; another is a commercially used patch that absorbs the sweat and is then reconstituted with water. The third is called a Microfabricated Sweat Patch (MSP) built using micro-chip inspired-technology. Sweat is removed from the MSP using a mini-centrifuge. The technology was developed by Clarke and Daniel Feeback, a lead scientist with NASA's Life Science Directorate.

"Our goal is to develop a micro-fabricated sweat patch that collects a sweat sample from the skin, performs a biomarker analysis and immediately provides a read-out to the user," said Clarke. The first phase of the study will determine if sweat can be used to monitor bone loss. Next, it will determine which patch technology most accurately measures the chemicals associated with bone loss.

The last phase of the study will look specifically at the MSP and will involve 60 people, from young college students to elderly men and women, to new Air Force recruits. Each will wear a series of patches during normal daily activities and then perform exercises at the UH Laboratory of Integrated Physiology. The patches then will be collected and the sweat analyzed. Changes in bone also will be monitored using bone mineral density scans performed in the department. Clarke expects this phase of the project to span at least eight months.

Being in a microgravity environment causes astronauts' bodies to lose more bone mineral than they can replace, which makes them vulnerable to fractures and breaks. Even when they return to Earth, the bone loss continues as their bodies slowly begin the process of replacing the bone mineral content. This is a critical concern, especially as the space program considers longer space missions to Mars or the Moon.

Clarke says the research has applications for those susceptible to bone loss, such as the elderly, post-menopausal women and adolescent girls

"Typically, it takes up to six months to see if changes in your exercise and eating habits are helping to maintain or increase bone mineral density," Clarke said. "Astronauts on long flights need this information quicker so that they can make adjustments to their exercise protocols, diet or drug treatments. Similarly, bone loss in women can be seen as early as the teen years, so this kind of fast and easy screening device can provide advance notice to fend off serious bone density issues later in their lives."

Data will be presented at annual NASA conferences.

Source: University of Houston

Explore further: Video gives astronaut's-eye view inside NASA's Orion spacecraft

add to favorites email to friend print save as pdf

Related Stories

Hormone-blocking drug reduces breast cancer risk

Jun 04, 2011

(AP) -- Millions of women at higher-than-usual risk of breast cancer have a new option for preventing the disease. Pfizer Inc.'s Aromasin cut the risk of developing breast cancer by more than half, without the side effects ...

Tour de France Stresses Riders' Bodies to the Limit

Jul 19, 2010

Glancing at the elevation profiles of the stages of the 2010 Tour de France is enough to tire a couch potato. The mountainous race is legendarily strenuous, but beyond short-term discomforts such as road rash ...

Sticks and stones break bones, but new study may prevent it

Dec 09, 2009

The best way to prevent a fracture is to stop bones from reaching the point where they are prone to breaking, but understanding the process of how bones form and mature has been challenging. Now researchers at the University ...

Recommended for you

SDO captures images of two mid-level flares

Dec 19, 2014

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.