Tweezers Trap Nanotubes by Color

Sep 26, 2008

Singled-walled carbon nanotubes are graphene sheets wrapped into tubes, and are typically made up of various sizes and with different amounts of twist (also known as chiralities). Each type of nanotube has its own electronic and optical properties. Physicists at Osaka University in Japan used colored light to selectively manipulate different types of carbon nanotubes. They found that some of nanotubes displayed a tendency to cluster at the focal area of a focused laser beam.

Nanotubes are known for their strong color-dependant interactions with light. By using an optical tweezer, a device that traps microscopic or nanoscopic objects in laser beams, researchers were able to selectively pull only specific colors of nanotube into focus.

Their results are the first experimental evidence demonstrating that colored light drives the clustering of nanotubes in a laser tweezer. Moreover, this color dependence can be exploited to select one type of nanotube over another. The study is a significant step towards developing optical methods for sorting and purification of nanotubes, a process that remains a major challenge for the application of nanotubes to engineering.

Citation: T. Rodgers, S. Shoji, Z. Sekkat and S. Satoshi Kawata, Physical Review Letters, link.aps.org/abstract/PRL/v101/e127402

Source: American Physical Society

Explore further: Study sheds new light on why batteries go bad

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

Researchers create world's largest DNA origami

Sep 11, 2014

Researchers from North Carolina State University, Duke University and the University of Copenhagen have created the world's largest DNA origami, which are nanoscale constructions with applications ranging ...

Excitonic dark states shed light on TMDC atomic layers

Sep 11, 2014

(Phys.org) —A team of Berkeley Lab researchers believes it has uncovered the secret behind the unusual optoelectronic properties of single atomic layers of transition metal dichalcogenide (TMDC) materials, ...

User comments : 0