Ocean floor geysers warm flowing sea water

Sep 22, 2008

An international team of earth scientists report movement of warmed sea water through the flat, Pacific Ocean floor off Costa Rica. The movement is greater than that off midocean volcanic ridges. The finding suggests possible marine life in a part of the ocean once considered barren.

With about 71 percent of the Earth's surface being ocean, much remains unknown about what is under the sea, its geology, and the life it supports. A new finding reported by American, Canadian and German earth scientists suggests a rather unremarkable area off the Costa Rican Pacific coast holds clues to better understand sea floor ecosystems.

Carol Stein, professor of earth and environmental sciences at the University of Illinois at Chicago, is a member of the research team that has studied the region, located between 50 and 150 miles offshore and covering an area the size of Connecticut. The sea floor, some two miles below, is marked by a collection of about 10 widely separated outcrops or mounts, rising from sediment covering crust made of extinct volcanic rock some 20-25 million years old.

Stein and her colleagues found that seawater on this cold ocean floor is flowing through cracks and crevices faster and in greater quantity than what is typically found at mid-ocean ridges formed by rising lava. Water temperatures, while not as hot as by the ridge lava outcrops, are surprisingly warm as well.

Finding so much movement in a bland area of the ocean was surprising.

"It's like finding Old Faithful in Illinois," said Stein. "When we went out to try to get a feel for how much heat was coming from the ocean floor and how much sea water might be moving through it, we found that there was much more heat than we expected at the outcrops."

The water gushing from sea floor protrusions warms as it moves through the insulated volcanic rock and picks up heat.

"It's relatively warm and may have some of the nutrients needed to support some of the life forms we see on the sea floor," said Stein. Her best guess as to why the water flows so rapidly is that it accelerates off nearby sea mounts and follows a well-connected network of cracks beneath the sea floor.

The earth scientists dropped probes from ships down to the pitch-dark ocean floor to collect temperature and heat-flow data to form images of what is happening in this area of the ocean, with water flowing down into rock, heating up and remixing below the floor sediment, and then escaping above the sea floor.

Only in recent decades have earth scientists discovered such life forms as bacteria, clams and tubeworm species living near the hot water discharges along the mid-ocean volcanic ridges. The rather flat undersea areas which Stein and her colleagues studied were thought to be lifeless, but the nutrient-enhanced warm water flows they discovered suggests this area too may be capable of supporting life.

"The sea floor may not be quite as much of a desert even as we thought maybe 20 or 10 years ago, but rather there may be a lot of locations similar to this well-studied area in terms of the water flow where there's a lot more biological activity," she said.

The earth scientists hope to do follow-up studies to add details to their findings, and see if they can find other regions comparable to the one off Costa Rica.

"We're only beginning to really understand the interplay of the water flow and the nature of the ecosystem on the sea floor," said Stein. "I think as we move away from the ridge crests, understand what's going in the overall ocean, we'll have a better understanding of how life is distributed and affects the oceans and our planet."

The findings were reported in a letter printed in Nature Geoscience's September 2008 issue.

Source: University of Illinois at Chicago

Explore further: Soil nutrients may limit ability of plants to slow climate change

Related Stories

Climate connections

Apr 14, 2015

In common parlance, the phrase "global climate change" is often used to describe how present-day climate is changing in response to human activities. But climate has also varied naturally and sometimes quite ...

Ocean 'dead zones' a growing disaster for fish

Apr 09, 2015

Falling ocean oxygen levels due to rising temperatures and influence from human activities such as agrochemical use is an increasingly widespread problem. Considering that the sea floors have taken more than 1,000 years to recover from past eras of low ox ...

Recommended for you

Extending climate predictability beyond El Nino

1 hour ago

Tropical Pacific climate variations and their global weather impacts may be predicted much further in advance than previously thought, according to research by an international team of climate scientists ...

Ocean currents impact methane consumption

18 hours ago

Large amounts of methane - whether as free gas or as solid gas hydrates - can be found in the sea floor along the ocean shores. When the hydrates dissolve or when the gas finds pathways in the sea floor to ...

Study shines new light on the source of diamonds

23 hours ago

A team of specialists from four Australian universities, including the University of Western Australia, has established the exact source of a diamond-bearing rock for the first time.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.