Researchers Discover Nanoparticles Can Break On Through

Sep 16, 2008

(PhysOrg.com) -- In a finding that could speed the use of sensors or barcodes at the nanoscale, North Carolina State University engineers have shown that certain types of tiny organic particles, when heated to the proper temperature, bob to the surface of a layer of a thin polymer film and then can reversibly recede below the surface when heated a second time.

Selectively bringing a number of particles to a surface and then sinking them back below it results in controllable surface patterns. According to NC State researchers involved in the project, patterning surfaces is one of the holy grails of current nanotechnology research, and is difficult to do with certain particles. They add that the finding could result in tiny reusable bar codes, or in small fluorescent features that turn off when they sense too much heat or the presence of a certain chemical.

Dr. Jan Genzer, professor of chemical and biomolecular engineering, and Dr. Richard Spontak, professor of chemical and biomolecular engineering and materials science and engineering, published their finding along with graduate students Arif Gozen and Bin Wei in the journal Nano Letters. They worked with engineers who designed the unique particles at the University of Melbourne in Australia.

The researchers used a special type of organic nanoparticle called a core-shell microgel in which the core of a cross-linked, or networked, polymer is surrounded by a shell of a different polymer.

"Most polymers are chain-like macromolecules that are like very long, cooked spaghetti noodles, but these special core-shell particles are shaped more like squash balls of one polymer with a fuzzy surface of a different polymer," Spontak says.

Heating these approximately 30-nanometer particles – which are hundreds of times smaller than a human hair – allows them to break through a polymer/polymer interface like a submarine coming to the surface of water. Reheating the particles at a polymer surface sinks them back below the surface.

"This technique allows us to place the particles right where we want them – on the surface of a thin film," Genzer says. "It can be used to create a reusable bar code, for instance, or other functional polymer surfaces."

Citation: Autophobicity-Driven Surface Segregation and Patterning of Core-Shell Microgel Nanoparticles. Online Aug. 8, 2008, in Nano Letters

Provided by North Carolina State University

Explore further: Vault nanoparticles show promise for cancer treatment and possible HIV cure

add to favorites email to friend print save as pdf

Related Stories

New material structures bend like microscopic hair

Aug 06, 2014

MIT engineers have fabricated a new elastic material coated with microscopic, hairlike structures that tilt in response to a magnetic field. Depending on the field's orientation, the microhairs can tilt to ...

Advancing medicine, layer by layer

Jul 02, 2014

Personalized cancer treatments and better bone implants could grow from techniques demonstrated by graduate students Stephen W. Morton and Nisarg J. Shah, who are both working in chemical engineering professor ...

Recommended for you

Tissue regeneration using anti-inflammatory nanomolecules

56 minutes ago

Anyone who has suffered an injury can probably remember the after-effects, including pain, swelling or redness. These are signs that the body is fighting back against the injury. When tissue in the body is damaged, biological ...

Cut flowers last longer with silver nanotechnology

Aug 21, 2014

Once cut and dunked in a vase of water, flowers are susceptible to bacterial growth that shortens the length of time one has to enjoy the blooms. A few silver nanoparticles sprinkled into the water, might be the answer to ...

Relaxing DNA strands by using nano-channels

Aug 20, 2014

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

Сalculations with nanoscale smart particles

Aug 19, 2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Thadieus
1 / 5 (1) Sep 16, 2008
1984?
Bob_B
not rated yet Sep 16, 2008
Been there, onward to 1985!