Flower-shaped nanoparticles may lead to better batteries for portable electronics

Sep 15, 2008

Want more power and longer battery life for that cell phone, laptop, and digital music player? "Flower power" may be the solution. Chemists are reporting development of flower-shaped nanoparticles with superior electronic performance than conventional battery materials. These "nanoflowers" may power next-generation electronic devices, say the scientists in a report scheduled for the Oct. 8 issue of ACS' Nano Letters.

Gaoping Cao and colleagues point out that nanoflowers are not new. Researchers have developed various types of flower-shaped nanoparticles using different materials, including manganese oxide, the key metallic ingredient that powers conventional batteries.

However, older-generation nanoflowers were not suitable for electronic products of the future, which will demand more power and longer battery life, the researchers say.

In the new study, scientists first grew clusters of carbon nanotubes, strands of pure carbon 50,000 times thinner than a human hair, that are known to have superior electrical conductivity. The scientists then deposited manganese oxide onto the nanotubes using a simple, low-cost coating technique called "electrodeposition," resulting in nano-sized clusters that resemble tiny dandelions under an electron microscope.

The result was a battery system with higher energy storage capacity, longer life, and greater efficiency than conventional battery materials, the researchers say.

Citation: "Growth of Manganese Oxide Nanoflowers on Vertically-Aligned Carbon Nanotube Arrays for High-Rate Electrochemical Capacitive Energy Storage"; dx.doi.org/10.1021/nl800925j

Source: American Chemical Society

Explore further: Researchers make nanostructured carbon using the waste product sawdust

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Nanoparticle technology triples the production of biogas

Oct 22, 2014

Researchers of the Catalan Institute of Nanoscience and Nanotechnology (ICN2), a Severo Ochoa Centre of Excellence, and the Universitat Autònoma de Barcelona (UAB) have developed the new BiogàsPlus, a technology which allows ...

Research unlocks potential of super-compound

Oct 22, 2014

Researchers at The University of Western Australia's have discovered that nano-sized fragments of graphene - sheets of pure carbon - can speed up the rate of chemical reactions.

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

Wasabi
5 / 5 (1) Sep 16, 2008
Would be nice to know how MUCH 'longer life, greater effciency, etc.' the new batteries possess comapared to conventional ones.
gmurphy
5 / 5 (1) Sep 16, 2008
agreed.
joefarah
not rated yet Sep 16, 2008
How does this compare to Altair Nanotechonology battery technology?
NeilFarbstein
1 / 5 (1) Sep 18, 2008
Altair has real garbage that loses all of its' charge in 2 days.