Robots Detect Behavioral Cues to Follow Humans

Aug 21, 2008 by Lisa Zyga feature
Robots Detect Behavioral Cues to Follow Humans
A follower robot follows a leader robot (with UC Davis logo). Using behavioral cues, the follower can make its mission more reliable and accurate. Image credit: Chueh, et al. ©2008 IEEE.

Robots can be ironic. Even though they might not have emotions of their own, they can still detect and respond to humans’ emotions. A recent study has shown that, by picking up on human emotional traits, as well as a variety of other conscious and unconscious behavioral cues, robots may be able to act more naturally and accurately with humans.

The researchers, from the University of California, Davis, have developed a system that allows follower robots to use behavioral cues from human leaders and other robots in order to track and follow them. The ability to follow will likely be essential as robots continue to work alongside people more and more, such as in office buildings, hospitals, and airports.

“As humans, we constantly incorporate other peoples' current actions as clues (cues) as to what they may do in the future,” Sanjay Joshi of the University of California, Davis, told PhysOrg.com. “For instance, we have a ‘sixth sense’ on the highway to know that a certain car will swerve into our lane soon, based on the driver's current driving patterns. Then, we may become more defensive in our own driving. In our work, we wanted to begin the process of allowing robots to use behavioral cues (of humans or other robots), to make the robot's mission more reliable and accurate. In social work environments populated by numerous people and robots, these types of cues should be abundant.”

In their robot-following system, the researchers integrated information provided by behavioral cues to improve the performance of robot followers along with other tracking methods, such as cameras. The system continuously estimates the future predicted position of the leader as it moves, and then directs the follower robot to the predicted position.

The researchers’ aim was to reduce the amount of instructions or technical expertise required from human leaders to robots. As the authors noted, robots may be accepted if they are helpful, but can easily be rejected if they are difficult to work with.

The researchers explained that behavioral cues that robots might use could include any action or signal that the leader exhibits that hints at a future action. These might be intended behaviors, such as pointing or waving. Other cues might be unconscious, such as behaviors that indicate stress or sadness, since they may indicate generally quick or slow movement patterns. Also, studies on human walking have shown that people unconsciously turn their head up to 25 degrees about 200 milliseconds before turning.

In experiments, the researchers tested how well a follower robot (Evolution Robotics’ Scorpion) could follow a leader robot (another Scorpion) as it zig-zagged and turned a corner of a hallway. Turning was the more difficult action to follow, since the leader robot escaped the sight of the follower robot. Without using behavioral cues, the follower robot would initiate a searching algorithm by turning and looking around. If the leader wasn’t too far away, the follower could detect it and continue following; otherwise, it would be lost and stop moving.

The addition of the behavioral-cue controller significantly helped the follower robot to keep track of the leader. By detecting the leader’s subtle behaviors, the follower could anticipate when the leader was about to turn and predict its future path. Even though it lost sight of the leader, it kept close enough to its path so that it could find the leader again after the “blind” turn.

Overall, the behavioral-cue model had advantages in cases where the leader robot made drastic turns that would otherwise leave the follower robot lost. But since other controllers also had advantages, the researchers suggest that a supervisory control system that coordinates multiple controllers could be useful. They also anticipate that a wide range of behavioral cues should lead to highly successful robot followers.

“In the future, we hope to explore relevant behavioral cues for other robot tasks in human-robot work environments, and work on the robotics and computer science tools needed to make effective use of those cues,” Joshi said.

More information: Chueh, Michael; Au Yeung, Yi Lin William; Lei, Kim-Pang Calvin; and Joshi, Sanjay S. “Following Controller for Autonomous Mobile Robots Using Behavioral Cues.” IEEE Transactions on Industrial Electronics, Vol. 55, No. 8, August 2008.

Copyright 2008 PhysOrg.com.
All rights reserved. This material may not be published, broadcast, rewritten or redistributed in whole or part without the express written permission of PhysOrg.com.

Explore further: Q&A: Drones might help explain how tornadoes form

add to favorites email to friend print save as pdf

Related Stories

Google updates hair-pulling CAPTCHA with tick box

Dec 04, 2014

Google's reCAPTCHA is a free anti-abuse service to protect users' websites from spam and abuse. The good news is that the CAPTCHA test can be tossed for many users, replaced with a simple one-box tick saying ...

Touch to feel the virtual world (w/ Video)

Jul 02, 2013

Haptic technology, which simulates the sense of touch through tactile feedback mechanisms, has been described as "doing for the sense of touch what computer graphics does for vision." Haptics are already ...

Research shows cue-giving robots help students learn

May 30, 2012

(Phys.org) -- The well-known fact is that humans can teach robots, but the newer turn in educational circles is all about how robots can teach humans. The stepped-up robots are “animated” and "adaptive" agents that ...

Bird brains more precise than humans'

Sep 19, 2014

(Phys.org) —Birds have been found to display superior judgement of their body width compared to humans, in research to help design autonomous aircraft navigation systems.

Recommended for you

Throwing money at data breach may make it worse

22 minutes ago

Information systems researchers at the University of Arkansas, who studied the effect of two compensation strategies used by Target in reaction to a large-scale data breach that affected more than 70 million customers, have ...

How will Google, Apple shake up car insurance industry?

32 minutes ago

Car insurance industry, meet potential disrupters Google and Apple. Currently, nearly all mainstream insurers that offer driver-monitoring programs use relatively expensive devices that plug into a portal under the dashboard. ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

smiffy
2 / 5 (1) Aug 22, 2008
Why not have the leader robot simply indicate which way it's going to turn? As even people in cars do.
NOM
4 / 5 (1) Aug 28, 2008
Why not have the leader robot simply indicate which way it's going to turn? As even people in cars do.
That would help with robot to robot communication, but the article is discussing combinations of humans and robots.
wrapper
not rated yet Sep 04, 2008
Why not have the leader robot simply indicate which way it's going to turn? As even people in cars do.

This is about learning not receiving directions, the driver anticipates anothers movement, without signaling. And Behavioral Cues concept is outstanding.
smiffy
not rated yet Sep 19, 2008
Anthropization of robots is for toymakers.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.