Study Details How Platinum Nanocages 'Cook' Cancer Cells

Aug 15, 2008

Platinum-based anticancer agents have a long history as proven therapeutic agents, but their toxicity and short lifetime in the body and the ability of tumors to develop resistance to these drugs limit the ultimate utility of these agents.

In an attempt to overcome these limitations, a multi-institutional research team comprising members from Stanford University, the Massachusetts Institute of Technology (MIT), and the University of Duisburg-Essen in Germany is using targeted carbon nanotubes as delivery agents for an inactive form of platinum that cancer cells themselves convert into a toxic anticancer agent.

Reporting its work in the Journal of the American Chemical Society, the research team headed by Stanford’s Hongjie Dai, Ph.D., a member of the Center for Cancer Nanotechnology Excellence Focused on Therapy Response, and Stephen Lippard, Ph.D., MIT, describes its development of methods to attach platinum-containing compounds firmly to the surface of carbon nanotubes to create what they call a “longboat delivery system” for the platinum warhead.

The particular form of platinum that the researchers use, known as platinum-IV, is capable of binding to other molecules in addition to the nanotube. The investigators use that capability to attach the tumor-targeting agent folic acid to the platinum warhead.

When administered to tumor cells that overexpress a folic acid receptor, the modified nanotubes rapidly enter the target cell. There, enzymes within the cell convert platinum-IV to a far more toxic form known as platinum-II. This chemical conversion has the effect of releasing platinum from the nanotube and enabling it to travel to the cell nucleus, where it reacts with deoxyribonucleic acid (DNA) and eventually kills the cell.

Tests with cancer cells growing in culture showed that this nanotube formulation of platinum is more than 8 times more potent than the approved anticancer agent cisplatin.

This work, which is detailed in the paper “Targeted Single-Wall Carbon Nanotube-Mediated Pt(IV) Prodrug Delivery Using Folate as a Homing Device,” was supported by the NCI Alliance for Nanotechnology in Cancer. An abstract of this paper is available through PubMed.

Provided by National Cancer Institute

Explore further: Physicists create new nanoparticle for cancer therapy

add to favorites email to friend print save as pdf

Related Stories

Can maths cure cancer?

Feb 07, 2014

Scientists, including Professor Tanniemola Liverpool from the University of Bristol's School of Mathematics, claim that by understanding how an artificial 'synthetic swimmer' can be made and driven, and how ...

'Copper pump's' potential benefit in cancer treatment

May 17, 2012

(Phys.org) -- A team of University of California, San Diego researchers has made new discoveries about a copper-transporting protein in the membranes of human cells that drug-discovery scientists can co-opt ...

Platinum and blue light combine to combat cancer

Dec 09, 2010

When it comes to health care blue lights, are usually most useful on the top of ambulances but now new research led by the University of Warwick has found a way to use blue light to activate what could be ...

New platinum-phosphate compounds kill ovarian cancer cells

Nov 19, 2008

A new class of compounds called phosphaplatins can effectively kill ovarian, testicular, head and neck cancer cells with potentially less toxicity than conventional drugs, according to a new study published this week in the ...

Supercomputers join search for 'cheapium'

Jan 03, 2014

In the search for cheaper materials that mimic their purer, more expensive counterparts, researchers are abandoning hunches and intuition for theoretical models and pure computing power.

Recommended for you

Physicists create new nanoparticle for cancer therapy

Apr 16, 2014

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

NeilFarbstein
2 / 5 (3) Aug 15, 2008
use platinum or somthing else
irjsi
1 / 5 (1) Aug 15, 2008
Out of the Laboratory and into the Patient

More news stories

Wiring up carbon-based electronics

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Tiny power plants hold promise for nuclear energy

Small underground nuclear power plants that could be cheaper to build than their behemoth counterparts may herald the future for an energy industry under intense scrutiny since the Fukushima disaster, the ...