High-Tech 'Heart' of New-Generation Radio Telescope Passes First Test

Aug 12, 2008
Plots of amplitude (top) and phase (bottom) from WIDAR correlator "first fringes" on August 7, 2008.

The Expanded Very Large Array (EVLA), part of the National Radio Astronomy Observatory (NRAO), took a giant step toward completion on August 7 with successful testing of advanced digital hardware designed to combine signals from its upgraded radio-telescope antennas to produce high resolution images of celestial objects.

By upgrading the 1970s-era electronics of its original Very Large Array (VLA), NRAO is creating a major new radio telescope that is ten times more sensitive than before. Using the EVLA, astronomers will observe fainter and more-distant objects than previously possible and use vastly improved analysis tools to decipher their physics.

The heart of the new electronics that makes this transformation possible is a high-performance, special-purpose supercomputer, called the WIDAR Correlator. It has been designed and is being built by the National Research Council of Canada at the Dominion Radio Astrophysical Observatory (DRAO) of the Herzberg Institute for Astrophysics, and serves as Canada's contribution to the EVLA project.

The design of the correlator incorporates an NRC-patented new digital electronic architecture. The successful test, at the VLA site 50 miles west of Socorro, New Mexico, used prototype correlator electronics to combine the signals from two upgraded VLA antennas to turn them into a single, high-resolution telescope system, called an interferometer. The technical term for this achievement is called "first fringes."

Each upgraded EVLA antenna produces 100 times more data than an original VLA antenna. When all 27 antennas are upgraded, they will pump data into the WIDAR correlator at a rate equal to 48 million digital telephone calls. To process this torrent of data, the correlator will make 10 million billion calculations per second.

Powerful, multi-antenna imaging radio-telescope systems use pairs of antennas as their basic building blocks. Each of the VLA's 27 giant dish antennas is combined electronically with every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly-detailed image of some astronomical object. The successful two-antenna test thus verifies the design of the new correlator.

"This achievement marks the first time that the complete chain of electronics for the EVLA has worked together, and represents a huge milestone in the project. Our congratulations go to our Canadian colleagues and to the NRAO staff members participating in this project. This is a job well done," said Fred Lo, Director of the National Radio Astronomy Observatory.

The VLA Expansion, a ten-year project approved in 2001, is funded by $55 million from the United States National Science Foundation (NSF) and $1.75 million from the Mexican government. The Canadian correlator represents a contribution of about $17 million to the project.

Throughout the project, the VLA has continued to operate, using a mix of the old and new-style antennas to provide an ongoing research tool. Over its lifetime, the VLA has been the most scientifically-productive ground-based telescope in the history of astronomy.

When completed in 2012, the EVLA will be the most powerful centimeter-wavelength radio telescope in the world. The technology developed for the EVLA will enable progress on the next generation radio telescope called the Square Kilometer Array (SKA).

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Provided by National Radio Astronomy Observatory

Explore further: First potentially habitable Earth-sized planet confirmed: It may have liquid water

add to favorites email to friend print save as pdf

Related Stories

Surprising image provides new tool for studying galaxy

Nov 14, 2013

Astronomers studying gas halos around nearby galaxies were surprised when detailed studies with the National Science Foundation's Karl G. Jansky Very Large Array (VLA) showed that one of their subjects is ...

Expanded VLA flexing new scientific muscle

May 24, 2011

A new and uniquely powerful tool for cutting-edge science is emerging on the crisp, high desert of western New Mexico. Outwardly, it looks much the same as the famed Very Large Array (VLA), a radio telescope ...

Recommended for you

Exoplanets soon to gleam in the eye of NESSI

2 hours ago

(Phys.org) —The New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI) will soon get its first "taste" of exoplanets, helping astronomers decipher their chemical composition. Exoplanets are planets ...

A sharp eye on Southern binary stars

22 hours ago

Unlike our sun, with its retinue of orbiting planets, many stars in the sky orbit around a second star. These binary stars, with orbital periods ranging from days to centuries, have long been the primary ...

Hubble image: A cross-section of the universe

23 hours ago

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

User comments : 0

More news stories

Ceres and Vesta Converge in Virgo

Don't let them pass you by. Right now and continuing through July, the biggest and brightest asteroids will be running on nearly parallel tracks in the constellation Virgo and so close together they'll easily ...

LADEE mission ends with planned lunar impact

(Phys.org) —Ground controllers at NASA's Ames Research Center in Moffett Field, Calif., have confirmed that NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft impacted the surface ...

Could 'Jedi Putter' be the force golfers need?

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...