Researchers analyze material with 'colossal ionic conductivity'

Jul 31, 2008
Researchers analyze material with 'colossal ionic conductivity'
The molecular model of the ion-conducting material shows that numerous vacancies at the interface between the two layers create an open pathway through which ions can travel. Image: Oak Ridge National Laboratory

A new material characterized at the Department of Energy's Oak Ridge National Laboratory could open a pathway toward more efficient fuel cells.

The material, a super-lattice developed by researchers in Spain, improves ionic conductivity near room temperature by a factor of almost 100 million, representing "a colossal increase in ionic conduction properties," said Maria Varela of ORNL's Materials Science and Technology Division, who characterized the material's structure with senior researcher Stephen Pennycook.

The paper, a collaboration between researchers at the Universities of Madrid and at ORNL, was published today in Science.

The analysis was done with ORNL's 300 kilovolt Z-contrast scanning transmission electron microscope, which can achieve aberration-corrected resolutions near 0.6 angstrom, until recently a world record. The direct images show the crystal structure that accounts for the material's conductivity.

"It is amazing," Varela said. "We can see the strained, yet still ordered, interface structure that opens up a wide pathway for ions to be conducted."

Solid oxide fuel cell technology requires ion-conducting materials -- solid electrolytes -- that allow oxygen ions to travel from cathode to anode. However, existing materials have not provided atom-scale voids large enough to easily accommodate the path of a conducted ion, which is much bigger than, for example, an electron.

"The new layered material solves this problem by combining two materials with very different crystal structures. The mismatch triggers a distortion of the atomic arrangement at their interface and creates a pathway through which ions can easily travel," Varela said.

Other fuel cell materials force ions to travel through tight pathways with few spaces for the ions to occupy, slowing their progress. Rather than forcing the ions to jump from hole to hole, the new material has "lots of vacant spaces to be occupied," said Varela, so the ions can travel much more quickly.

Unlike previous fuel cell materials, which have to achieve high temperatures to conduct ions, the new material maintains ionic conductivity near room temperatures. High temperatures have been a major roadblock for developers of fuel cell technology.

The research team with Spain's Universidad Complutense de Madrid and Universidad Politécnica de Madrid produced the material and observed its outstanding conductivity properties, but the structural characteristics that enable the material to conduct ions so well were not known until the material was put under the ultra-high resolution microscopes at ORNL.

Source: Oak Ridge National Laboratory

Explore further: Scaling up armor systems

add to favorites email to friend print save as pdf

Related Stories

Team advances fuel cell car technology

5 hours ago

Dr. Yossef Elabd, professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, has developed two fuel cell vehicle platforms for both present day enhancements and future innovation.

Getting to know Rosetta's comet

Jan 23, 2015

Rosetta is revealing its host comet as having a remarkable array of surface features and with many processes contributing to its activity, painting a complex picture of its evolution.

Glass for battery electrodes

Jan 13, 2015

Today's lithium-ion batteries are good, but not good enough if our future energy system is to rely on electrical power. Chemists and materials scientists at ETH Zurich have developed a type of glass that ...

Recommended for you

Evidence mounts for quantum criticality theory

3 hours ago

A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting ...

Scaling up armor systems

9 hours ago

Dermal modification is a significant part of evolution, says Ranajay Ghosh, an associate research scientist in the College of Engineering. Almost every organism has something on its skin that provides important ...

Seeking cracks in the Standard Model

10 hours ago

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

The first optically synchronised free-electron laser

10 hours ago

Scientists at DESY have developed and implemented an optical synchronisation system for the soft X-ray free-electron laser FLASH, achieving facility-wide synchronisation with femtosecond precision. The performance ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

irjsi
3 / 5 (2) Jul 31, 2008
Bravo! Bravisimo ! ! !
Get the lattices into pilot
production facilities for cost/scale
evaluations and into fuel cells.
The World is Hungry for energy and motive
power.
Saludes Ustedes
Rogelio Stewart,
Phoenix AZ
Bruggeling
not rated yet Aug 01, 2008
Why isn't the title of this article : "Spanish scientists develop material with 'colossal ionic conductivity'" ?

I am a long time reader of this site and now and then I am a bit annoyed with the Anglo-American bias. There, I said it :)
earls
not rated yet Aug 01, 2008
There are two different parties. The Spanish that developed the material and the US (ORNL) that analyzed it. This article is geared towards the latter.

On the ORNL page there's an image of the superlattice: http://www.ornl.g...80731-02
Bruggeling
not rated yet Aug 01, 2008
With two thirds of the article describing the properties of the material we can safely say this is chauvinistic bias. But I suppose that is to be expected in view of the readership ?
Eco_R1
not rated yet Aug 04, 2008
whats the use, we will only get to see it in like a 100 years!!!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.