New nanotech research to enhance future digital imaging

Jul 10, 2008

A team of researchers from Northeastern’s Electronic Materials Research Institute has published research that has resulted in a new breakthrough in the field of nanophotonics, the study of light at the nanoscale level.

Led by Sri Sridhar, Distinguished Professor and Chair of Physics at Northeastern University, a team of researchers from the university’s Electronic Materials Research Institute has published research that has resulted in a new breakthrough in the field of nanophotonics, the study of light at the nanoscale level.

Utilizing nanomanufacturing processes, the researchers were able to develop an optical microlens with a step-like surface, instead of a smooth surface, that has the capacity to operate at infrared frequencies using the novel phenomenon of negative index refraction.

The team of researchers involved with this project includes Wentao Lu, Ph.D., Bernard Didier F. Casse, Ph.D., and Yongjiang Huang, all from Northeastern. Their findings were published in a recent edition of the journal, Applied Physics Letters.

By using nanolithography, a manufacturing technique used for electronic circuits, the team was able to fabricate this planoconcave lens in the nanoscale. These microlenses function in the infrared frequency range, which is used for optical communications, and use the novel phenomenon of negative refraction, which is not found to occur in natural materials, but can be created in artificial metamaterials. Microlenses are a critical component of optoelectronic devices, which utilize the flow of light rather than of conventional currents as is used in conventional electronics. The technology of these optical circuits has the capacity to create superior devices for data capturing and storage, and for producing high quality, high pixel count images.

“These nano-optical components are essential for superior optical transmission and reception of data that will be used in the future generation of imaging and communication devices,” explained Sridhar. “Our ultimate goal is to integrate both optical and electronic devices onto a single chip, creating a single platform that utilizes both light and electrons with the potential to significantly increase the quality of circuits that are at the heart of all digital electronic devices today.”

Source: Northeastern University / PhysOrg.com

Explore further: 3-D images of tiny objects down to 25 nanometres

Related Stories

Yet more opportunities for organic semiconductors

12 hours ago

From 'Radio frequency identification' (RFID) tags to OLED displays and photovoltaic cells, organic semiconductors' high potential is widely recognised. A Marie Curie project has set out to bring potential innovation to the ...

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

Applications of optical fibre for sensors

Mar 26, 2015

Mikel Bravo-Acha's PhD thesis has focused on the applications of optical fibre as a sensor. In the course of his research, conducted at the NUP/UPNA-Public University of Navarre, he monitored a sensor fitted to optical fibre ...

Nanostructure complex materials modeling  

Mar 25, 2015

Materials with chemical, optical, and electronic properties driven by structures measuring billionths of a meter could lead to improved energy technologies—from more efficient solar cells to longer-lasting ...

Scientists build a nanolaser using a single atomic sheet

Mar 24, 2015

University of Washington scientists have built a new nanometer-sized laser—using the thinnest semiconductor available today—that is energy efficient, easy to build and compatible with existing electronics.

Recommended for you

3-D images of tiny objects down to 25 nanometres

Mar 30, 2015

Scientists at the Paul Scherrer Institute and ETH Zurich (Switzerland) have created 3D images of tiny objects showing details down to 25 nanometres. In addition to the shape, the scientists determined how ...

Solving molybdenum disulfide's 'thin' problem

Mar 27, 2015

The promising new material molybdenum disulfide (MoS2) has an inherent issue that's steeped in irony. The material's greatest asset—its monolayer thickness—is also its biggest challenge.

Snowflakes become square with a little help from graphene

Mar 25, 2015

The breakthrough findings, reported in the journal Nature, allow better understanding of the counterintuitive behaviour of water at the molecular scale and are important for development of more efficient techno ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.