Crop management: How small do we go?

Jul 08, 2008

The use of on-the-go crop and soil sensors has greatly increased the precision with which farmers can manage their crops. Recently released research in Agronomy Journal questions whether more precise management is necessarily more efficient. They discovered that the law of diminishing returns applies to precision agriculture, calculating how large of an application area is optimal for precision management techniques. According to the authors, this change could present significant cost savings for farmers.

In their article, "Spatial Analysis of Early Wheat Canopy Normalized Difference Vegetative Index: Determining Appropriate Observation Scale," E.M. Pena-Yewtukhiw, West Virginia University; G.J. Schwab and J.H. Grove, University of Kentucky; L.W. Murdock, University of Kentucky and the West Kentucky Research and Education Center; and J.T. Johnson, Clark County Cooperative Extension Center, examine how precise sensor and application grids should be for optimal efficiency.

To determine the ideal amount of data needed for precision management, the researchers calculated the optimal combination of physical sensor density (number of sensors along the applicator apparatus) and sensor output density (sensor readings per unit distance along the travel path).

The researchers found that sensor grid size can be increased from the current smallest size of .5 square meters to 5.1 square meters with no significant impact on the overall mapping of a crop's canopy or field variation. The larger grid requires fewer sensors and makes fertilizer application easier and more cost efficient. This tenfold increase in grid size could have significant cost savings for farmers using precision management techniques.

Source: American Society of Agronomy

Explore further: Nimoy inspired generations of sci-fi fans

add to favorites email to friend print save as pdf

Related Stories

A robot to help improve wine production

Jan 29, 2015

A European research consortium comprising Spanish, French, Italian and German universities and companies is working on the development of an unmanned robot, equipped with non-invasive advanced sensors and ...

Recommended for you

Bribery 'hits 1.6 billion people a year'

Feb 27, 2015

A total of 1.6 billion people worldwide – nearly a quarter of the global population – are forced to pay bribes to gain access to everyday public services, according to a new book by academics at the Universities of Birmingham ...

How music listening programmes can be easily fooled

Feb 26, 2015

For well over two decades, researchers have sought to build music listening software that can address the deluge of music growing faster than our Spotify-spoilt appetites. From software that can tell you ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.