Super-sensitive explosives detector can detect explosives at distances exceeding 20 yards

Jun 26, 2008

Using a laser and a device that converts reflected light into sound, researchers at the Department of Energy's Oak Ridge National Laboratory can detect explosives at distances exceeding 20 yards.

The method is a variation of photoacoustic spectroscopy but overcomes a number of problems associated with this technique originally demonstrated by Alexander Graham Bell in the late 1880s. Most notably, ORNL researchers are able to probe and identify materials in open air instead of having to introduce a pressurized chamber, which renders photoacoustic spectroscopy virtually useless for security and military applications.

ORNL's technique, detailed in Applied Physics Letters 92, involves illuminating the target sample with an eye-safe pulsed light source and allowing the scattered light to be detected by a quartz crystal tuning fork.

"We match the pulse frequency of the illuminating light with the mechanical resonant frequency of the quartz crystal tuning fork, generating acoustic waves at the tuning fork's air-surface interface," said Charles Van Neste of ORNL's Biosciences Division. "This produces pressures that drive the tuning fork into resonance."

The amplitude of this vibration is proportional to the intensity of the scattered light beam falling on the tuning fork, which because of the nature of quartz creates a piezoelectric voltage.

Van Neste and co-authors Larry Senesac and Thomas Thundat note that other advantages of quartz tuning fork resonators include compact size, low cost, commercial availability and the ability to operate in field conditions environments.

For their experiments, researchers used tributyl phosphate and three explosives – cyclotrimethylenetrinitromine, trinitrotoluene, commonly known as TNT, and pentaerythritol tetranitrate. They were able to detect trace residues with lasers 100 times less powerful than those of competing technologies.

While the researchers have been able to detect explosives at 20 meters, using larger collection mirrors and stronger illumination sources, they believe they can achieve detection at distances approaching 100 meters.


Source: DOE/Oak Ridge National Laboratory

Explore further: Firm combines 3-D printing with ancient foundry method

add to favorites email to friend print save as pdf

Related Stories

Distant supernova split four ways by gravitational lens

Mar 05, 2015

Over the past several decades, astronomers have come to realize that the sky is filled with magnifying glasses that allow the study of very distant and faint objects barely visible with even the largest telescopes.

Confirmation bias in studies of gamma ray bursts

Dec 16, 2014

Our understanding of gamma ray bursts (GRBs) – flashes of gamma rays from explosions in distant galaxies – since they were discovered more than 50 years ago may not be as solid as first thought.

'Twisted rope' clue to dangerous solar storms

Oct 22, 2014

A "twisted rope" of magnetically-charged energy precedes solar storms that have the potential to damage satellites and electricity grids, French scientists said on Wednesday.

Recommended for you

Firm combines 3-D printing with ancient foundry method

Mar 27, 2015

A century-old firm that's done custom metal work for some of the nation's most prestigious buildings has combined 3-D printing and an ancient foundry process for a project at the National Archives Building in Washington, ...

Wearable device helps vision-impaired avoid collision

Mar 26, 2015

People who have lost some of their peripheral vision, such as those with retinitis pigmentosa, glaucoma, or brain injury that causes half visual field loss, often face mobility challenges and increased likelihood ...

Applications of optical fibre for sensors

Mar 26, 2015

Mikel Bravo-Acha's PhD thesis has focused on the applications of optical fibre as a sensor. In the course of his research, conducted at the NUP/UPNA-Public University of Navarre, he monitored a sensor fitted to optical fibre ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.