CSIRO scientist discovers natural 'invisible' gold

Jun 23, 2008

The search for these natural but 'invisible' nanoparticles is important. If they can be proved to exist, the knowledge will help give us a deeper understanding of how gold can be transported and deposited by geological processes, and therefore help explorers to find new gold deposits in Australia.

Now, hard evidence that gold nanoparticles have finally been seen in nature is presented in a paper published in GEOLOGY and authored by CSIRO Scientists from the Minerals Down Under National Research Flagship and CRC LEME, in collaboration with scientists from Curtin University and the University of Western Australia.

Lead author, CSIRO's Dr Rob Hough, explains that the particles were discovered in Western Australia. "In the southern areas of the State, groundwater is very salty and acidic. This water dissolves primary gold and re-deposits it as pure gold crystals on fracture surfaces and in open pore spaces," he says.

"On investigation of these crystals, there appeared to be a dark band across them. However, high magnification imaging showed the band was in fact, a mass of gold nanoparticles and nanoplates. These are identical to those being manufactured in laboratories around the world for their unique properties."

Clays from the fracture surface were then analysed. There was no gold visible, but analysis showed the clays contained up to 59 parts-per-million of gold. The research team concluded that the nanoparticles of gold they had imaged represented the 'invisible' gold in the clay, and that this nanosized gold was common in similar environments.

"The gold nanoparticles have not been identified earlier because they are transparent to electron beams and effectively invisible," Dr Hough says. "However, they are probably a common form of gold in this type of natural environment worldwide, where saline water interacts with gold deposits. They also provide the first direct observation of the nanoscale mobility of gold during weathering."

With gold fetching around (AU) $950 an ounce and expected to rise, this research is good news for Australia's gold explorers.

Source: CSIRO Australia

Explore further: The latest fashion: Graphene edges can be tailor-made

add to favorites email to friend print save as pdf

Related Stories

Optical 'watermills' control spinning light

Nov 14, 2014

Scientists at King's have built on research they conducted last year to achieve previously unseen levels of control over the travelling direction of electromagnetic wave in waveguides and proved that the ...

Gold nanorods target cancer cells

Dec 18, 2014

Using tiny gold nanorods, researchers at Swinburne University of Technology have demonstrated a potential breakthrough in cancer therapy.

Atomic 'mismatch' creates nano 'dumbbells'

Dec 05, 2014

Like snowflakes, nanoparticles come in a wide variety of shapes and sizes. The geometry of a nanoparticle is often as influential as its chemical makeup in determining how it behaves, from its catalytic properties ...

Computer model enables design of complex DNA shapes

Dec 03, 2014

MIT biological engineers have created a new computer model that allows them to design the most complex three-dimensional DNA shapes ever produced, including rings, bowls, and geometric structures such as icosahedrons that ...

Recommended for you

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

The importance of building small things

Jan 22, 2015

Strong materials, such as concrete, are usually heavy, and lightweight materials, such as rubber (for latex gloves) and paper, are usually weak and susceptible to tearing and damage. Julia R. Greer, professor ...

Graphene brings quantum effects to electronic circuits

Jan 22, 2015

Research by scientists attached to the EC's Graphene Flagship has revealed a superfluid phase in ultra-low temperature 2D materials, creating the potential for electronic devices which dissipate very little ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.