Nanoparticles assemble by millions to encase oil drops

May 29, 2008

In a development that could lead to new technologies for cleaning up oil spills and polluted groundwater, scientists at Rice University have shown how tiny, stick-shaped particles of metal and carbon can trap oil droplets in water by spontaneously assembling into bag-like sacs.

The tiny particles were found to assemble spontaneously by the tens of millions into spherical sacs as large as BB pellets around droplets of oil in water. In addition, the scientists found that ultraviolet light and magnetic fields could be used to flip the nanoparticles, causing the bags to instantly turn inside out and release their cargo -- a feature that could ultimately be handy for delivering drugs.

"The core of the nanotechnology revolution lies in designing inorganic nanoparticles that can self-assemble into larger structures like a 'smart dust' that performs different functions in the world – for example, cleaning up pollution," said lead research Pulickel Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science. "Our approach brings the concept of self-assembling, functional nanomaterials one step closer to reality."

The research was published online today by the American Chemical Society's journal Nano Letters.

The multisegmented nanowires, akin to "nanoscale batons," were made by connecting two nanomaterials with different properties, much like an eraser is attached to the end of a wooden pencil. In the study, the researchers started with carbon nanotubes -- hollow tubes of pure carbon. Atop the nanotubes, they added short segments of gold. Ajayan said that by adding various other segments -- like sections of nickel or other materials -- the researchers can create truly multifunctional nanostructures.

The tendency of these nanobatons to assemble in water-oil mixtures derives from basic chemistry. The gold end of the wire is water-loving, or hydrophilic, while the carbon end is water-averse, or hydrophobic. The thin, water-tight sacs that surround all living cells are formed by interlocking arrangements of hydrophilic and hydrophobic chemicals, and the sac-like structures created in the study are very similar.

Ajayan, graduate student Fung Suong Ou and postdoctoral researcher Shaijumon Manikoth demonstrated that oil droplets suspended in water became encapsulated because of the structures' tendency to align their carbon ends facing the oil. By reversing the conditions -- suspending water droplets in oil – the team was able to coax the gold ends to face inward and encase the water.

"For oil droplets suspended in water, the spheres give off a light yellow color because of the exposed gold ends," Ou said. "With water droplets, we observe a dark sphere due to the protruding black nanotubes."

The team is next preparing to test whether chemical modifications to the "nanobatons" could result in spheres that can both capture and break down oily chemicals. For example, they hope to attach catalysts to the water-hating ends of the nanowires that will cause compounds like trichloroethene, or TCE, to break into nontoxic constituents. Another option would be to attach drugs whose release can be controlled with an external stimulus.

"The idea is to go beyond just capturing the compound and initiate a process that will make it less toxic," Ajayan said. "We want to build upon the method of self assembly and start adding functionality so these particles can carry out tasks in the real world."

Source: Rice University

Explore further: How we can substitute critical raw materials in catalysis, electronics and photonics

add to favorites email to friend print save as pdf

Related Stories

Key facts on US 'open Internet' regulation

13 minutes ago

A landmark ruling by the US Federal Communications Commission seeks to enshrine the notion of an "open Internet," or "net neutrality." Here are key points:

Spotify deals with random shuffle and we mortals

14 minutes ago

How do we mortals perceive random sequences? An entry in the question-and-answer site Quora focused on a question involving a music-streaming service Spotify. That question signifies how we perceive what ...

Top-precision optical atomic clock starts ticking

15 minutes ago

A state-of-the-art optical atomic clock, collaboratively developed by scientists from the University of Warsaw, Jagiellonian University, and Nicolaus Copernicus University, is now "ticking away" at the National ...

Cats put sight over smell in finding food

38 minutes ago

Cats may prefer to use their eyes rather than follow their nose when it comes to finding the location of food, according to new research by leading animal behaviourists.

'Bright spot' on Ceres has dimmer companion

3 minutes ago

Dwarf planet Ceres continues to puzzle scientists as NASA's Dawn spacecraft gets closer to being captured into orbit around the object. The latest images from Dawn, taken nearly 29,000 miles (46,000 kilometers) ...

Recommended for you

Semiconductor miniaturisation with 2D nanolattices

Feb 26, 2015

A European research project has made an important step towards the further miniaturisation of nanoelectronics, using a highly-promising new material called silicene. Its goal: to make devices of the future ...

Magnetic nanoparticles enhance performance of solar cells

Feb 25, 2015

Magnetic nanoparticles can increase the performance of solar cells made from polymers - provided the mix is right. This is the result of an X-ray study at DESY's synchrotron radiation source PETRA III. Adding ...

Researchers enable solar cells to use more sunlight

Feb 25, 2015

Scientists of the University of Luxembourg and of the Japanese electronics company TDK report progress in photovoltaic research: they have improved a component that will enable solar cells to use more energy of the sun and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.