Acute artificial compound eyes

May 28, 2008
Acute artificial compound eyes
Winner of the Hugo Geiger Prize (1st place): Andreas Brückner.

Insects are a source of inspiration for technological development work. For example, researchers around the world are working on ultra-thin imaging systems based on the insect eye. The principle of hyperacuity has now been successfully incorporated in a technical model.

Insects have inspired scientists to transfer features which have been optimized over millions of years to present-day products. Research scientists at the Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena, for example, are working on the development of an ultra-thin image sensor based on the insect eye. In the work for his degree dissertation “High-precision position determination with artificial compound eyes”, Andreas Brückner improved the imaging properties of these systems with regard to sensor applications.

Insects have not just two, but thousands of eyes. Each facet of their eye picks up one image point, and the numerous facets, each with its own lens and visual cells, are spread over the surface of a hemisphere. As a result, the insect eye can cover a wide viewing angle – but the resolution of the images produced is not particularly high. This is surprising, given that insects can fly very precise maneuvers.

They are able to do so because of the principle of hyperacuity – insects see more than the images actually captured by their compound eyes because the visual fields of adjacent facets overlap, and Andreas Brückner is replicating this phenomenon in a technical system. “The aim was to develop micro-optical compound eyes which contain numerous parallel imaging channels and which are also extremely compact, thinner than 0.5 millimeters,” reports Andreas Brückner.

To achieve this, he began by analyzing how images are created in artificial compound eyes. Given that each facet captures one image point, the challenge was to accomplish controlled overlapping in the technical system. With a precise knowledge of the angular sensitivity, image signals of adjacent facets can then be compared with each other. This makes it possible to determine the position of the object viewed in a two-dimensional visual field with an accuracy which is many times higher than the image resolution.

A comparison has shown that an artificial compound eye lens can transfer information with an effective image resolution of 625 x 625 pixels although the number of actually available image pixels is limited to 50 x 50. As a result, the sensor can recognize simple objects, precisely determine their position and size, and also reliably detect movements. Brückner is to be presented with the Hugo Geiger Prize (1st place) for the results of his dissertation.

Several projects are already underway to implement the process, for instance as solar altitude sensors in automobiles, for recognizing traffic lanes in driver assistance systems, and in machine vision.

Source: Fraunhofer-Gesellschaft

Explore further: New process recycles valuable rare earth metals from old electronics

add to favorites email to friend print save as pdf

Related Stories

Huge spring tides draw crowds to French Atlantic coast

17 hours ago

France kicked off nearly a month of exceptionally large spring tides Saturday, as tourists flocked to coastal areas to witness spectacularly high water levels ahead of the so-called "tide of the century" ...

Water in Oregon pipeline is tapped for electricity

19 hours ago

Lucid Energy has developed a renewable energy system that makes use of water moving through pipelines. The company's LucidPipe Power System converts pressure in water pipelines into electricity. They have ...

Arctic oil drillers face tighter US rules to stop spills

21 hours ago

Royal Dutch Shell Plc and any oil drilling company that prospects in the Arctic Ocean must boost safety practices to prevent spills in the frigid and often hostile waters or mitigate the impact, U.S. regulators proposed Friday.

Recommended for you

Florentine basilica gets high-tech physical

Feb 26, 2015

Late last year, two University of California, San Diego students set out for Florence, Italy, to diagnose a patient that had no prior medical record, couldn't be poked or prodded in any way, and hadn't been ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.