Precision control of movement in robots

May 16, 2008

A research team from the Department of Electricity and Electronics at the University of the Basque Country’s Faculty of Science and Technology in Leioa, Spain, led by Victor Etxebarria, is investigating the characteristics of various types of materials for their use in the generation and measurement of precise movements.

When the arms of a robot move to pick up an egg or an electric lamp, the greatest precision possible is essential. To this end, advances in the science and technology of materials have provided the design and control of systems equipped with sensors and actuators built with new materials.

The Automation Group at the Department of Electricity and Electronics of the Faculty of Science and Technology at the Leioa campus of the University of the Basque Country (UPV-EHU) is studying the stimulus-response characteristics of various kinds of materials to be used in the generation and measurement of precise movements in electromechanical systems in miniature and in robotics.

The studies focused on two types of materials in concrete, and which had promising characteristics for micropositionng applications: shape-memory alloys (SMA) and magnetic shape memory (MSM) alloys or ferromagnetic shape memory alloys (FSMA). All these smart alloys are new materials, catalogued as intelligent for their ability to memorise shape and other novel properties.

Shape-memory alloys are capable of remembering their original size and shape despite having undergone a deformation process. The most common alloy amongst these is that generically known as nitinol, given that it is made of almost 50% nickel and almost 50% titanium. It is on the market and is sold in the form of wire.

Magnetic shape memory alloys are ferromagnetic materials capable of withstanding large transformations that are reversible both in shape and size when a magnetic field is applied to them. They do not exist as yet commercially and are currently only made in research laboratories.

The team built a number of potentially useful devices for robotics, using these shape memory materials, and investigated new applications fundamentally aimed at light or miniaturised electromechanical systems.

Laboratory prototypes

The use of SMA as actuators in low-precision applications is not something particularly novel. However, the researchers at the UPV/EHU have developed some experimental devices that radically improve the control of positioning of these actuators. Thanks to this, they have built a prototype of a lightweight gripping claw device for a flexible robot of small dimensions, capable of handling small objects. To achieve this, they placed nitinol wire between two elastic metal sheets in such a way that, when an electric current is applied to the wire, the sheets contract and the “claw” completely closes, gripping small objects around it. With the current switched off, the claws open completely. Nevertheless, the UPV/EHU team has managed to enhance the opening-closing movement, to the point of precision of within a micron. This level of precision is sufficient for many applications, for example in machine tooling.

As regards magnetic and ferromagnetic shape memory alloys, the UPV/EHU researchers designed a device which had a precision of positioning objects to within 20 nanometres. Being a handmade device with a simple control, the researchers do not doubt that it can be improved. Moreover, it could be a serious candidate to substitute current high precision devices, given that positioning devices manufactured with ferromagnetic shape memory alloys have the great advantage that, once suitably positioned, they do not consume energy. The use of FSMA actuators could become highly important in certain applications, for example, in large-dimension telescopes that have a great number of mirrors that have to move with great precision in order to focus correctly.

All these devices, currently at a laboratory stage, are useful for testing the basic characteristics of the materials, but perhaps in the future they could be end-product commercial prototypes for robotic devices and in micro and nanopositioning.

Source: Elhuyar Fundazioa

Explore further: Lifting the brakes on fuel efficiency

add to favorites email to friend print save as pdf

Related Stories

Glasses strong as steel: A fast way to find the best

Apr 13, 2014

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

3-D printing yields advantages for US ITER engineers

Mar 12, 2014

(Phys.org) —ITER, the international fusion research facility now under construction in St. Paul-lez-Durance, France, has been called a puzzle of a million pieces. US ITER staff at Oak Ridge National Laboratory ...

Recommended for you

Lifting the brakes on fuel efficiency

Apr 18, 2014

The work of a research leader at Michigan Technological University is attracting attention from Michigan's Governor as well as automotive companies around the world. Xiaodi "Scott" Huang of Michigan Tech's ...

Large streams of data warn cars, banks and oil drillers

Apr 16, 2014

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.