MIT Creates New Material For Fuel Cells, Increases Power Output By 50 Percent

May 15, 2008
New material for fuel cells created
The new, thin material developed by MIT engineers for use in methanol fuel cells. Photo courtesy / Avni Argun and Nathan Ashcraft, MIT

MIT engineers have improved the power output of one type of fuel cell by more than 50 percent through technology that could help these environmentally friendly energy storage devices find a much broader market, particularly in portable electronics.

The new material key to the work is also considerably less expensive than its conventional industrial counterpart, among other advantages.

“Our goal is to replace traditional fuel-cell membranes with these cost-effective, highly tunable and better-performing materials,” said Paula T. Hammond, Bayer Professor of Chemical Engineering and leader of the research team. She noted that the new material also has potential for use in other electrochemical systems such as batteries.

The work was reported in a recent issue of Advanced Materials by Hammond, Avni A. Argun and J. Nathan Ashcraft. Argun is a postdoctoral associate in chemical engineering; Ashcraft is a graduate student in the same department.

Like a battery, a fuel cell has three principal parts: two electrodes (a cathode and anode) separated by an electrolyte. Chemical reactions at the electrodes produce an electronic current that can be made to flow through an appliance connected to the battery or fuel cell. The principal difference between the two" Fuel cells get their energy from an external source of hydrogen fuel, while conventional batteries draw from a finite source in a contained system.

The MIT team focused on direct methanol fuel cells (DMFCs), in which the methanol is directly used as the fuel and reforming of alcohol down to hydrogen is not required. Such a fuel cell is attractive because the only waste products are water and carbon dioxide (the latter produced in small quantities). Also, because methanol is a liquid, it is easier to store and transport than hydrogen gas, and is safer (it won't explode). Methanol also has a high energy density-a little goes a long way, making it especially interesting for portable devices.

The DMFCs currently on the market, however, have limitations. For example, the material currently used for the electrolyte sandwiched between the electrodes is expensive. Even more important: that material, known as Nafion, is permeable to methanol, allowing some of the fuel to seep across the center of the fuel cell. Among other disadvantages, this wastes fuel-and lowers the efficiency of the cell-because the fuel isn't available for the reactions that generate electricity.

Using a relatively new technique known as layer-by-layer assembly, the MIT researchers created an alternative to Nafion. “We were able to tune the structure of [our] film a few nanometers at a time,” Hammond said, getting around some of the problems associated with other approaches. The result is a thin film that is two orders of magnitude less permeable to methanol but compares favorably to Nafion in proton conductivity.

To test their creation, the engineers coated a Nafion membrane with the new film and incorporated the whole into a direct methanol fuel cell. The result was an increase in power output of more than 50 percent.

The team is now exploring whether the new film could be used by itself, completely replacing Nafion. To that end, they have been generating thin films that stand alone, with a consistency much like plastic wrap.

This work was supported by the DuPont-MIT Alliance through 2007. It is currently supported by the National Science Foundation.

Source: Massachusetts Institute of Technology

Explore further: Simulation method identifies materials for better batteries

add to favorites email to friend print save as pdf

Related Stories

Polymer-coated catalyst protects 'artificial leaf'

Jun 17, 2013

Due to the fluctuating availability of solar energy, storage solutions are urgently needed. One option is to use the electrical energy generated inside solar cells to split water by means of electrolysis, ...

Recommended for you

Mechanical behavior of twinned aluminum revealed

21 hours ago

A research group has discovered plasticity and work-hardening behaviors in twinned aluminum with incoherent twin boundaries by using in situ nanoindentation technique. The group's paper titled "In situ nanoindentation ...

Invisibility cloaks closer thanks to 'digital metamaterials'

21 hours ago

The concept of "digital metamaterials" – a simple way of designing metamaterials with bizarre optical properties that could hasten the development of devices such as invisibility cloaks and superlenses – is reported in a paper published today in Nature ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

lengould100
not rated yet Aug 14, 2008
I think the PR group is greatly exaggerating the benefits of methanol. Energy dense compared to what? Certainly not any currently common fuel.