Scientists Automate Molecular Evolution

Apr 23, 2008

Under the control of a computer at The Scripps Research Institute, a population of billions of genes morphed through 500 cycles of forced adaptation to emerge as molecules that could grow faster and faster on a continually dwindling source of chemical fuel -- a feat that researchers describe as an example of "Darwinian evolution on a chip."

The super molecules that resulted, a species of RNA enzyme, were produced in about 70 hours using an automated tool that is about the size of a compact disc, according to the study published in the April issue of PLoS Biology. The Scripps Research investigators who designed the device note that the findings provide an example of the Darwinian principle of selective pressure at work, seen in real time.

"This is evolution at the level of molecules as a fact, not a theory," says the study's senior investigator, Gerald Joyce, Scripps Research professor in the Departments of Chemistry and Molecular Biology. "This is what it looks like when a computer controls conditions that push molecules to adapt in order to thrive--survival of the fittest on the smallest scale possible."

The evolved enzymes that resulted exhibited a new set of 11 mutations that improved their ability to survive under substrate-starvation conditions by 90-fold, compared to the starting molecules.

The study's first author, Brian Paegel, a postdoctoral researcher in Joyce's lab, noted that the study is the first of its kind. In previous research, scientists had managed to force adaptation in the test tube by manually adding and extracting ingredients. However, that technique produced an isolated snapshot rather than a dynamic overview of the evolution process.

"No one has been able to observe what the process looks like until now," Paegel says. "It's like before you could only see little bits of a fine painting. Now, we can step back and watch a complete picture of evolution happening at its most fundamental level, on a molecular scale."

Paegel and Joyce designed and patented the microfluidic device they used in the study. The device is basically a thin glass plate, four inches in diameter, with microscopic channels and valves that a computer can control to add or extract small amounts of material. The cost to construct a device is about $8.

Pushing the Limits of an Artificial Molecule

In this study, the scientists used artificial RNA enzymes based on molecules originally developed by David Bartel and Jack Szostak at Harvard Medical School, which were derived starting from completely random RNA sequences. These molecules had been used before in "test tube" evolution experiments carried out by manual methods. The molecules have the ability to catalyze the joining of other RNA molecules, similar to a large protein known as an RNA polymerase. In the system developed by Paegel and Joyce, an RNA molecule that performed this reaction would automatically be copied to produce molecular "progeny."

In the newly published study, Paegel and Joyce loaded the microfluidic device with billions of RNA enzymes and the RNA copying machinery. They then added the chemical fuel that the RNA enzymes must utilize in order to be copied. The scientists provided progressively lower concentrations of the fuel at set intervals, as a way to direct the evolution of the RNA enzymes. Every time the concentration was reduced, those RNA enzymes whose genetic features allowed them to withstand the more stringent conditions multiplied in greater numbers than RNA enzymes that were not so adapted. Each time the size of the population of molecules reached a predetermined level, the computer isolated 1/10 th of the population--which now contained higher numbers of successfully adapted RNA enzymes—and mixed it with a new supply of chemical fuel.

These steps were repeated automatically for 500 iterations of 10-fold growth followed by 10-fold dilution. "The competition between the RNA enzymes to scrape up the few substrates became progressively stiffer, and the variants of RNA enzymes that could bind fastest and tightest to the substrate fuel molecules won out," Paegel says.

"We starved these enzymes, pushing them to become better and faster at forming a bond so they could reproduce themselves," Joyce says. "This is like the evolution of animals that can survive food famines. Only here we can see it happen in 70 hours and we know why the mutations that constitute evolution in these molecules occurred. We witnessed the entire story."

Although RNA molecules are not "alive" in the classic sense, they evolve in the same way that viruses do, Paegel says. But unlike those pathogens, which need protective casings to survive, these molecules are not dangerous, he says, because they degrade quickly outside of the chip.

Besides offering a powerful demonstration of real-time evolution—which could also be used to study adaptation in proteins, viruses, and even cellular organisms--the technology may have a number of practical uses, the scientists say, although it was not designed with these in mind. For example, it may be possible to use the technology to create RNA enzymes that act as super chemical sensors. The technology might also be used to help in the design of new medicines by encouraging molecules to evolve to perform a desired function.

The study was funded by grants from the National Science Foundation, the National Aeronautics and Space Administration, and the National Institutes of Health. To view the article, go to biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371%2Fjournal.pbio.0060085 .

Source: Scripps Research Institute

Explore further: Free the seed: OSSI nurtures growing plants without patent barriers

add to favorites email to friend print save as pdf

Related Stories

New study outlines 'water world' theory of life's origins

9 hours ago

(Phys.org) —Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed ...

Gene removal could have implications beyond plant science

5 hours ago

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...

A closer look into the TSLP cytokine structure

Apr 04, 2014

The PROXIMA 2 beamline at Synchrotron SOLEIL recently celebrated its first birthday. It's an occasion to reflect back upon a year of the collaborative work accomplished and its high scientific impact. In ...

Some long non-coding RNAs are conventional after all

Apr 04, 2014

Not so long ago researchers thought that RNAs came in two types: coding RNAs that make proteins and non-coding RNAs that have structural roles. Then came the discovery of small RNAs that opened up whole new areas of research. ...

Detour leads to antibiotic resistance

Mar 28, 2014

Ludwig Maximilian University researchers have used cryo-electron microscopic imaging to characterize the structural alterations in the bacterial ribosome that are required for induction of resistance to the ...

Recommended for you

Plants with dormant seeds give rise to more species

Apr 18, 2014

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

randyb
not rated yet Apr 24, 2008
What definition of evolution are they using in this article?
Forced mutations = evolution?
earls
not rated yet Apr 24, 2008
simply "mutations = evolution"
Corvidae
not rated yet Apr 24, 2008
Actually, they're using natural selection in artificial environment. Mutation by itself is not evolution, it's the natural degradation of the species.

The difference between what they did and selective breeding is that the organisms reproduced without control. As opposed to a person pairing lighter and lighter cats until they breed a white cat.

More news stories

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.