Secure Communication via Space

Apr 22, 2008

The exchange of information between distant sources is the basis of all communications, but quantum mechanics may open up this distant exchange as never before.

Quantum key distribution, for instance, would allow for absolutely secure encryption of information exchange by encoding information keys on single photons. These photons are so sensitive that there is physically no way to undetectably tamper with them as they travel from sender to receiver.

Teleportation of quantized states is another possible application. This would allow future quantum computers to be interconnected using the properties of individualized photons or other quanta.

To achieve this type of technology, an exchange of single quanta between a sender and a remote receiver must occur. Already, some companies have explored ways of achieving quantum key distribution over fiber optics, but it has never been done using satellites.

Paolo Villoresi and his colleagues at the University of Padova in Italy, in collaboration with the group of Anton Zeilinger in Austria, have taken the first step to establishing quantum communications in space by exchanging single photons from an orbiting satellite to Earth.

They demonstrated how the Matera Laser Ranging Observatory in Matera, Italy, used for satellite laser ranging with ultimate precision, can be adapted as a quantum communication receiver to detect single quanta emitted by an orbiting source—in this case a Japanese low-Earth-orbiting satellite. They also identified the exact techniques needed to detect the very weak quantum signal to be exploited in a dedicated satellite.

The research will be presented at the 2008 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS) May 4-9 at the San Jose McEnery Convention Center in San Jose, Calif.

Source: Optical Society of America

Explore further: Finding faster-than-light particles by weighing them

add to favorites email to friend print save as pdf

Related Stories

Controlling light on a chip at the single-photon level

Dec 16, 2014

Integrating optics and electronics into systems such as fiber-optic data links has revolutionized how we transmit information. A second revolution awaits as researchers seek to develop chips in which individual ...

An Interview with Thomas Vidick on quantum code cracking

Dec 15, 2014

Quantum computers, looked to as the next generation of computing technology, are expected to one day vastly outperform conventional computers. Using the laws of quantum mechanics—the physics that governs ...

Fraud-proof credit cards possible with quantum physics

Dec 15, 2014

Credit card fraud and identify theft are serious problems for consumers and industries. Though corporations and individuals work to improve safeguards, it has become increasingly difficult to protect financial ...

Recommended for you

Finding faster-than-light particles by weighing them

Dec 26, 2014

In a new paper accepted by the journal Astroparticle Physics, Robert Ehrlich, a recently retired physicist from George Mason University, claims that the neutrino is very likely a tachyon or faster-than-light par ...

Controlling core switching in Pac-man disks

Dec 24, 2014

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

Atoms queue up for quantum computer networks

Dec 24, 2014

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guide to support physicists participating in radiation dosimetry audits.

Acoustic tweezers manipulate cell-to-cell contact

Dec 22, 2014

Sound waves can precisely position groups of cells for study without the danger of changing or damaging the cells, according to a team of Penn State researchers who are using surface acoustic waves to manipulate ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.