Ready to go: mobile terahertz devices

Apr 01, 2008

Terahertz waves, which until now have barely found their way out of the laboratory, could soon be in use as a versatile tool. Researchers have mobilized the transmitting and receiving devices so that they can be used anywhere with ease.

Everybody knows microwaves – but what are terahertz waves? These higher-frequency waves are a real jack-of-all-trades. They can help to detect explosives or drugs without having to open a suitcase or search through items of clothing. They can reveal which substances are flowing through plastic tubes. Doctors even hope that these waves will enable them to identify skin cancer without having to perform a biopsy.

In the electromagnetic spectrum, terahertz waves are to be found between infrared radiation and microwaves. They can penetrate wood, ceramics, paper, plastic or fabrics and are not harmful to humans. On the other hand, they cannot pass through metal. This makes them a universal tool: They change when passing through gases, solid materials or liquids. Each substance leaves its specific fingerprint, be it explosives or water, heroin or blood.

So far, however, the technology has not made a breakthrough, as it is expensive and time-consuming to build the required transmitters and receivers. Now researchers at the Fraunhofer Institute for Physical Measurement Techniques IPM are making the devices mobile. To generate terahertz waves, the scientists use a femtosecond laser which emits extremely short flashes of infrared light. To illustrate: In one femtosecond, a ray of light moves forward by about the width of a hair. The pulsed light is directed at a semiconductor, where it excites electrons which then emit terahertz waves. In conventional equipment, the laser light moves freely through the room, which makes measurement inflexible and susceptible to vibrations.

The Fraunhofer experts have taken a different approach, guiding the light through a glass fiber of a type similar to that used for transmitting data. “Our fiber-based system is so robust that we can simply plug it into a standard 240-volt socket,” says IPM expert Joachim Jonuscheit. This is not the only benefit: Until now the equipment has required a shock-proof base so that measurements are not falsified by vibrations. With the beam path inside a glass fiber, this is no longer necessary.

The advantages are obvious: The transmitters and receivers, which are about the size of beverage cans, are now attached to a flexible cable and can be positioned wherever desired. Since vibrations are no longer a problem, the device can even be deployed on the factory floor with fork-lift trucks driving around and heavy machinery vibrating. No inspection point is too difficult to access, as the glass fiber cables can bridge distances up to 25 meters.

Source: Fraunhofer-Gesellschaft

Explore further: Student develops filter for clean water around the world

add to favorites email to friend print save as pdf

Related Stories

Laser physics upside down

Jul 15, 2014

At the Vienna University of Technology a system of coupled lasers has been created which exhibits truly paradoxical behaviour: An increase in energy supply switches the lasers off, reducing the energy can ...

Team develops unique greenhouse gas meter

Jun 17, 2014

Laboratory for the Spectroscopy of Planetary Atmospheres of Moscow Institute of Physics and Technology has come up with a high-resolution meter to gauge the concentration of gases in the atmosphere with unparalleled ...

Recommended for you

Student develops filter for clean water around the world

18 hours ago

Roughly 780 million people around the world have no access to clean drinking water. According to the World Health Organization (WHO), 3.4 million people die from water-related diseases every year. ETH student Jeremy Nussbaumer ...

Minimising drag to maximise results

22 hours ago

One of the most exciting parts of the Tour de France for spectators is the tactical vying for spots in the breakaway group at the front of the pack.

User comments : 0