Scientists identify smallest known black hole

Apr 01, 2008
Scientists identify smallest known black hole
The lowest-mass known black hole belongs to a binary system named XTE J1650-500. The black hole has about 3.8 times the mass of our sun, and is orbited by a companion star, as depicted in this illustration. Credit: NASA/CXC/A. Hobar

Using a new technique, two NASA scientists have identified the lightest known black hole. With a mass only about 3.8 times greater than our Sun and a diameter of only 15 miles, the black hole lies very close to the minimum size predicted for black holes that originate from dying stars.

"This black hole is really pushing the limits. For many years astronomers have wanted to know the smallest possible size of a black hole, and this little guy is a big step toward answering that question," says lead author Nikolai Shaposhnikov of NASA’s Goddard Space Flight Center in Greenbelt, Md.

Shaposhnikov and his Goddard colleague Lev Titarchuk presented their results on Monday, March 31, at the American Astronomical Society High-Energy Astrophysics Division meeting in Los Angeles, Calif. Titarchuk also works at George Mason University in Fairfax, Va., and the US Naval Research Laboratory in Washington, DC.

The tiny black hole resides in a Milky Way Galaxy binary system known as XTE J1650-500, named for its sky coordinates in the southern constellation Ara. NASA’s Rossi X-ray Timing Explorer (RXTE) satellite discovered the system in 2001. Astronomers realized soon after J1650’s discovery that it harbors a normal star and a relatively lightweight black hole. But the black hole’s mass had never been measured to high precision.

The method used by Shaposhnikov and Titarchuk has been described in several papers in the Astrophysical Journal. It uses a relationship between black holes and the inner part of their surrounding disks, where gas spirals inward before making the fatal plunge. When the feeding frenzy reaches a moderate rate, hot gas piles up near the black hole and radiates a torrent of X-rays. The X-ray intensity varies in a pattern that repeats itself over a nearly regular interval. This signal is called a quasi-periodic oscillation, or QPO.

Astronomers have long suspected that a QPO’s frequency depends on the black hole’s mass. In 1998, Titarchuk realized that the congestion zone lies close in for small black holes, so the QPO clock ticks quickly. As black holes increase in mass, the congestion zone is pushed farther out, so the QPO clock ticks slower and slower. To measure the black hole masses, Shaposhnikov and Titarchuk use archival data from RXTE, which has made exquisitely precise measurements of QPO frequencies in at least 15 black holes.

Last year, Shaposhnikov and Titarchuk applied their QPO method to three black holes whose masses had been measured by other techniques. In their new paper, they extend their result to seven other black holes, three of which have well-determined masses. "In every case, our measurement agrees with the other methods," says Titarchuk. "We know our technique works because it has passed every test with flying colors."

When Shaposhnikov and Titarchuk applied their method to XTE J1650-500, they calculated a mass of 3.8 Suns, with a margin of uncertainty of only half a Sun. This value is well below the previous black hole record holder with a reliable mass measurement, GRO 1655-40, which tips the scales at about 6.3 Suns.

Below some unknown critical threshold, a dying star should produce a neutron star instead of a black hole. Astronomers think the boundary between black holes and neutron stars lies somewhere between 1.7 and 2.7 solar masses. Knowing this dividing line is important for fundamental physics, because it will tell scientists about the behavior of matter when it is scrunched into conditions of extraordinarily high density.

Despite the diminutive size of this new record holder, future space travelers had better beware. Smaller black holes like the one in J1650 exert stronger tidal forces than the much larger black holes found in the centers of galaxies, which make the little guys more dangerous to approach. "If you ventured too close to J1650’s black hole, its gravity would tidally stretch your body into a strand of spaghetti," says Shaposhnikov.

Shaposhnikov adds that RXTE is the only instrument that can make the high-precision timing observations necessary for this line of research. "RXTE is absolutely crucial for these black hole mass measurements," he says.

Source: Goddard Space Flight Center

Explore further: Stellar astronomers answer question posed by citizen scientists: 'What are yellowballs?'

add to favorites email to friend print save as pdf

Related Stories

Magnetic fields help in formation of massive stars

12 hours ago

Magnetic fields in massive dark clouds are strong enough to support the regions against collapse due to their own gravity. A study lead by researchers at the Max Planck Institute for Radio Astronomy in Bonn ...

The cosmic seeds of black holes

Jan 19, 2015

Supermassive black holes with millions or billions of solar-masses of material are found at the nuclei of most galaxies. During the embryonic stages of these galaxies they are thought to play an important ...

Galactic 'hailstorm' in the early universe

Jan 16, 2015

Two teams of astronomers led by researchers at the University of Cambridge have looked back nearly 13 billion years, when the Universe was less than 10 percent its present age, to determine how quasars - ...

High-speed jets from a possible new class of galaxy

Jan 19, 2015

Seyfert galaxies are similar to spiral galaxies except that they have extraordinarily prominent, bright nuclei, sometimes as luminous as 100 billion Suns. Their huge energies are thought to be generated as ...

Snapshot of cosmic burst of radio waves

Jan 19, 2015

A strange phenomenon has been observed by astronomers right as it was happening - a 'fast radio burst'. The eruption is described as an extremely short, sharp flash of radio waves from an unknown source in ...

Kudzu bugs spread into DC area, southern Delaware, Arkansas

Jan 17, 2015

The pea-sized bugs look a bit like ticks, can suck one-fifth of the yield out of a soybean field, and travel by highway. In the 5 1/2 years since they were first spotted in Georgia, kudzu bugs have spread 400 to 500 miles ...

Recommended for you

Black hole chokes on a swallowed star

23 hours ago

A five-year analysis of an event captured by a tiny telescope at McDonald Observatory and followed up by telescopes on the ground and in space has led astronomers to believe they witnessed a giant black hole ...

Swarm of microprobes to head for Jupiter

Jan 26, 2015

A swarm of tiny probes each with a different sensor could be fired into the clouds of Jupiter and grab data as they fall before burning up in the gas giant planet's atmosphere. The probes would last an estimated ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

open_minded
not rated yet Apr 04, 2008
Very interesting. This article states (below some critical theshold, a dying star should produce a neutron star instead of a black hole.) I agree. But does that mean that theshold is also the threshold needed for a black-hole to remain stable? No. All it means is that black-holes would not be able to be generated via a collapsing star. Other methods of creation of a black-hole could still be theoretically able to produce stable black-holes that are smaller still. Yes, there must be some threshold that marks the absolute minimum size of a black-hole, but that need not coincide with the minimum sized collapsed-star-black-hole.

There is a new model being debated at http://science-co...00005039 that suggests that black-holes can be very small and even uses this to account for the observation of dark-matter gravitational observations. This is an important debate because one of the possible outcomes of the soon to start LHC machine is the creation of mini black-holes. If they are indeed stable, we are all in trouble. I cannot find fault with the new theory. If you think you can, then go and attack it. If that theory is correct and debate doesn't occur, then ...
Snukis
not rated yet Apr 04, 2008
open minded see the date of this article ;)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.