Smart aircraft wings and new lightweight construction materials

Mar 26, 2008

At the JEC Composites Show 2008 to be held in Paris from April 1 to 3, Fraunhofer researchers will be exhibiting an aircraft wing that immediately detects any material damage. Another showcased development is a novel fiber-composite material with a fiber content that can extend to 50 or 60 percent by volume.

Nowadays it’s easy to hop on a plane and fly to London or spend a romantic weekend in Paris for just a few euros – if the volume of air traffic is increasing, one of the main reasons is the low tariffs. From an environmental point of view, however, this frequent and spontaneous use of air travel is a controversial issue.

A European consortium consisting of 86 industrial firms and research partners from 16 nations has therefore formed the “Clean Sky” Joint Technology Initiative (JTI) with the aim of minimizing the amount of air pollution caused by aircraft.

Through a number of research and development projects to be conducted over the next seven years, this initiative intends to help to reduce CO2 emissions by 50 percent, NOx emissions by 80 percent, and cut perceived noise by half. The researchers also intend to develop more environmentally compatible methods, processes and materials for the design, manufacture, operation and end-of-life disposal of aircraft. Six Fraunhofer Institutes are currently members of the consortium, and the Fraunhofer-Gesellschaft is one of the twelve organizations that make up the program’s Governing Board.

At the JEC Composites Show 2008 to be held in Paris from April 1 to 3, scientists from the Fraunhofer Institute for Structural Durability and System Reliability will be presenting a demonstrator of a structural health monitoring system based on the use of piezoelectric materials.

“We will be demonstrating an aircraft wing made of a fiber composite material incorporating a number of piezoelectric sensors and actuators,” says Dr. Ursula Eul, strategic manager of Fraunhofer LBF. “This system enables damage to the material, caused by impact for instance, to be detected at a very early stage – practically as it arises.”

Piezoelectric actuators in the structure emit acoustic signals which generate a specific pattern of structure-borne noise on the wing. The resulting vibrations are recorded by piezoelectric sensors. Any incipient damage to the material, such as the first signs of delamination, causes changes in the wave pattern of the structure-borne noise. A major challenge here is that the sensors integrated in the structure must not have any negative effect on the fatigue strength of the component or, worse still, on the normal performance of the wing. Reliable structural health monitoring systems that can operate continuously without affecting structural durability are one of the thematic areas of the Clean Sky Joint Technology Initiative.

Another of the exhibits to be featured at the JEC show stems from research at the Fraunhofer Institute for Chemical Technology ICT: A novel high-performance fiber composite material that demonstrates excellent crash behavior in addition to possessing high strength and stiffness, and is therefore particularly suitable for use in the automotive and aerospace industries.

Fiber-reinforced plastics generally consist of a matrix material into which reinforcement fibers – commonly glass or carbon – are embedded. “The most important requirement when producing high-performance fiber composite materials is that the fibers should be laid down in the direction subject to the highest stresses and that they should be adequately wetted by the matrix material. Our process enables us to achieve a high fiber content of between 50 and 60 percent by volume – a far higher ratio than that obtainable using other thermoplastic techniques,” declares Jan Kuppinger of the ICT.

The traditional method of producing thermoplastic fiber composites involves melting a plastic granulate to form the matrix and then mixing the viscous material with the selected type of fiber. “By contrast, in our process we start with the basic constituents of the polymer material, which have the same fluid properties as water and therefore wet the individual fibers much more efficiently. The ensuing polymerization process takes place very rapidly inside the tool,” explains Kuppinger. An added advantage is that polymerization occurs at a maximum temperature of 160°C, which is well below the melting point of the final polymerized thermoplastic. This considerably improves the energy efficiency of the process.

This innovative process for the manufacture of new high-performance fiber composites was developed by the Karlsruhe-based innovation cluster “KITe HyLite – Technologies for Lightweight Vehicle Construction”. The key research focus of this innovation cluster is technologies for function-integrated hybrid lightweight construction. Emphasis is placed on a holistic approach to fiber composite technologies, encompassing everything from basic methods and the design of new materials to manufacturing technologies.

Source: Fraunhofer-Gesellschaft

Explore further: Researchers increase the switching contrast of an all-optical flip-flop

add to favorites email to friend print save as pdf

Related Stories

Protection against wing icing

Sep 03, 2012

When ice builds-up on the wings of aircrafts, it drives up costs and impedes safety – and in the worst case scenario, could even cause an aircraft to crash. At the ILA Berlin Air Show from September 11 - 16, researchers ...

The 70 kilo single person plane

Apr 15, 2011

(PhysOrg.com) -- Aki Suokas, a Finnish aeronautical engineer, has just finished creating a unique single-seat aircraft this week. The project was completed at Aero Friedrichshafen, and it has been dubbed the ...

Recommended for you

Intelligent materials that work in space

Oct 23, 2014

ARQUIMEA, a company that began in the Business Incubator in the Science Park of the Universidad Carlos III de Madrid, will be testing technology it has developed in the International Space Station. The technology ...

Using sound to picture the world in a new way

Oct 22, 2014

Have you ever thought about using acoustics to collect data? The EAR-IT project has explored this possibility with various pioneering applications that impact on our daily lives. Monitoring traffic density ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

docatomic
1 / 5 (3) Mar 26, 2008
"Piezoelectric actuators in the structure emit acoustic signals which generate a specific pattern of structure-borne noise on the wing. The resulting vibrations are recorded by piezoelectric sensors. Any incipient damage to the material, such as the first signs of delamination, causes changes in the wave pattern of the structure-borne noise."

Inaccurate and misleading - rewrite instead as:

"Sound is generated within a wing in flight; a usual pattern of wind noise plus minor structural creaks and groans. Piezoelectric transducers incorporated into the wing structure in effect transform the wing into a rather large sort of electronic 'ear', with a computer monitoring the sum of packets arriving through the Wing Acoustic Transducer Local Communications Network (WATLoCoN) bus. Placing each individual transducer's real-time output value as an element within a live matrix array allows the computer to continuously scan and detect variations in pattern - should a significantly-sharp or sudden variation occur, an alarm signal may be triggered and a secondary process could immediately begin recording the array pattern stream. The entire system could be realised quite straightforwardly and inexpensively through employment of technology similar to the development level of home video intruder detection systems, which automatically begin recording when the otherwise normally-static camera scene suddenly varies beyond a threshold amount - with the only required addition to the wing acoustic detection system being several seconds worth of whole-array buffering, so that recording could effectively begin slightly prior to the actual event that had triggered it."
nilbud
2.5 / 5 (2) Mar 26, 2008
A) Take your pills
b) Your "rewrite" is stupid babble
iii) That's why noone likes you
HeRoze
2 / 5 (1) Mar 27, 2008
I think the original article and the 'rewrite' are addressing different implementations of the same end technology (piezoelectric sensors). The article points to interferometry, while the 'rewrite' points to impulse signals resulting from damage.
HeRoze
5 / 5 (1) Mar 28, 2008
Docatomic - don't be an ass - if you're gonna rate someone low, have the decency of stating why.