Model offers new understanding of cell signaling

Mar 24, 2008

Looking for answers in the bright light of day, rather than the confined beam of a street light at night. That’s how University of Michigan researcher Sofia Merajver, M.D., Ph.D., describes the power of a new mathematical model that could have far-reaching impact on how scientists study cellular signaling pathways.

“This has the potential to be a true paradigm shift,” says Merajver, a professor in the U-M Department of Internal Medicine and co-director of the Breast Oncology Program at the U-M Comprehensive Cancer Center. She is the senior author of a study about the new model published online March 21 in PLoS Computational Biology.

Around the world, researchers scrutinize the pathways inside cells where signals travel and activate or suppress thousands of cell functions. The researchers want to learn which cellular processes are key in causing disease conditions and how to target them with new drugs. Understanding the full complexity of signaling pathways and their interactions is critical in discovering effective treatments for cancer, inflammation and other conditions that affect millions of people.

The full description of the new model in the article immediately offers scientists the opportunity to improve current mathematical models with a superior tool that can take advantage of advances in computing power, says Merajver.

“I would hope that it may help guide us much better than our own intuition to decide what our targets are,” she says. “If we can understand these pathways better, we should be able to pick more effective targets. This is the step before screening a drug. Until now, there have been very few tools to help us choose a target.”

Merajver’s collaborators in the study are first author Alejandra C. Ventura, Ph.D., a post-doctoral fellow in the U-M Department of Internal Medicine, Division of Hematology and Oncology and Comprehensive Cancer Center; and Jacques-A. Sepulchre, a mathematical physicist at the Institut Non Lineaire de Nice at the Universite de Nice Sophia-Antipolis in Valbonne, France.

The authors developed the model and tested it using experimental data from a well-known signaling pathway involved in many disease states, the MAPK pathway. They found that this kind of signaling pathway naturally transmits information not just in a forward direction, but also backwards. That implies new considerations if drugs are to adequately address key targets.

In addition, the study will enable scientists to construct models that take into account interactions between two pathways, or “cross-talk,” Merajver says.

A specialist in inflammatory breast cancer, Merajver previously has discovered oncogenes that foster metastasis. Her lab has numerous plans to put the model to work immediately.

“We hope it will broaden our understanding on how to inhibit metastasis, since our lab studies this aspect of cancer; this work has many applications for normal and disease conditions,” she says.

Source: University of Michigan Health System

Explore further: Cell division, minus the cells

add to favorites email to friend print save as pdf

Related Stories

Cell division, minus the cells

2 minutes ago

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

And so they beat on, flagella against the cantilever

Sep 16, 2014

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tracing water channels in cell surface receptors

Sep 09, 2014

G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors in our cells, involved in signal transmission across the cell membrane. One of the biggest questions is how a signal recognized at the extracellular ...

An "anchor" that keeps proteins together

Sep 04, 2014

All organisms react to different external and internal stimuli: if, for example, the hyphae fungus Sordaria macrospora is supplied with food, it produces fruiting bodies as part of its oestrous cycle. To ...

Recommended for you

Cell division, minus the cells

2 minutes ago

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

Scientist creates automatic birdsong recognition app

12 minutes ago

Dr Dan Stowell, an EPSRC Research Fellow in QMUL's School of Electrical Engineering and Computer Science, has used a grant from Queen Mary Innovation to develop a prototype for an app that turns his research ...

A new method simplifies the analysis of RNA structure

15 minutes ago

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

New research reveals fish are smarter than we thought

52 minutes ago

(Phys.org) —A new study from researchers in our Department of Psychology with colleagues at Queen Mary University of London has reported the first evidence that fish are able to process multiple objects ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Mar 24, 2008
tHE ELECTRON is the inteligence transfer vehicle both inside and outside the cell! It uses speed, vibration, spin, and trajectory, as language.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.