Model offers new understanding of cell signaling

Mar 24, 2008

Looking for answers in the bright light of day, rather than the confined beam of a street light at night. That’s how University of Michigan researcher Sofia Merajver, M.D., Ph.D., describes the power of a new mathematical model that could have far-reaching impact on how scientists study cellular signaling pathways.

“This has the potential to be a true paradigm shift,” says Merajver, a professor in the U-M Department of Internal Medicine and co-director of the Breast Oncology Program at the U-M Comprehensive Cancer Center. She is the senior author of a study about the new model published online March 21 in PLoS Computational Biology.

Around the world, researchers scrutinize the pathways inside cells where signals travel and activate or suppress thousands of cell functions. The researchers want to learn which cellular processes are key in causing disease conditions and how to target them with new drugs. Understanding the full complexity of signaling pathways and their interactions is critical in discovering effective treatments for cancer, inflammation and other conditions that affect millions of people.

The full description of the new model in the article immediately offers scientists the opportunity to improve current mathematical models with a superior tool that can take advantage of advances in computing power, says Merajver.

“I would hope that it may help guide us much better than our own intuition to decide what our targets are,” she says. “If we can understand these pathways better, we should be able to pick more effective targets. This is the step before screening a drug. Until now, there have been very few tools to help us choose a target.”

Merajver’s collaborators in the study are first author Alejandra C. Ventura, Ph.D., a post-doctoral fellow in the U-M Department of Internal Medicine, Division of Hematology and Oncology and Comprehensive Cancer Center; and Jacques-A. Sepulchre, a mathematical physicist at the Institut Non Lineaire de Nice at the Universite de Nice Sophia-Antipolis in Valbonne, France.

The authors developed the model and tested it using experimental data from a well-known signaling pathway involved in many disease states, the MAPK pathway. They found that this kind of signaling pathway naturally transmits information not just in a forward direction, but also backwards. That implies new considerations if drugs are to adequately address key targets.

In addition, the study will enable scientists to construct models that take into account interactions between two pathways, or “cross-talk,” Merajver says.

A specialist in inflammatory breast cancer, Merajver previously has discovered oncogenes that foster metastasis. Her lab has numerous plans to put the model to work immediately.

“We hope it will broaden our understanding on how to inhibit metastasis, since our lab studies this aspect of cancer; this work has many applications for normal and disease conditions,” she says.

Source: University of Michigan Health System

Explore further: Illuminating the dark side of the genome

add to favorites email to friend print save as pdf

Related Stories

Engineering light-controlled proteins

Jul 03, 2014

(Phys.org) —A University of Wyoming professor has engineered proteins that can be activated by near-infrared light as a way to control biological activities in deep tissues of small mammals.

New discovery in living cell signaling

Jul 03, 2014

A breakthrough discovery into how living cells process and respond to chemical information could help advance the development of treatments for a large number of cancers and other cellular disorders that ...

The science that stumped Einstein

Jul 01, 2014

In 1908, the physics world woke up to a puzzle whose layers have continued to stump the greatest scientists of the century ever since. That year, Dutch physicist Kamerlingh Onnes cooled mercury down to -450° ...

Jekyll and Hyde protein signalling

Jun 23, 2014

Whether a cell lives or dies is determined by complex protein networks within the body. Researchers in Systems Biology Ireland and UCD Conway Institute have uncovered how these opposing biological functions are regulated ...

Recommended for you

'Killer sperm' prevents mating between worm species

9 hours ago

The classic definition of a biological species is the ability to breed within its group, and the inability to breed outside it. For instance, breeding a horse and a donkey may result in a live mule offspring, ...

Rare Sri Lankan leopards born in French zoo

12 hours ago

Two rare Sri Lankan leopard cubs have been born in a zoo in northern France, a boost for a sub-species that numbers only about 700 in the wild, the head of the facility said Tuesday.

Japan wraps up Pacific whale hunt

13 hours ago

Japan announced Tuesday that it had wrapped up a whale hunt in the Pacific, the second campaign since the UN's top court ordered Tokyo to halt a separate slaughter in the Antarctic.

Researchers uncover secrets of internal cell fine-tuning

13 hours ago

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Mar 24, 2008
tHE ELECTRON is the inteligence transfer vehicle both inside and outside the cell! It uses speed, vibration, spin, and trajectory, as language.