Dutch University Tests Windmill for Seawater Desalination

Feb 29, 2008
Dutch University Tests Windmill for Seawater Desalination
A traditional windmill which drives a pump: that is the simple concept behind the combination of windmill/reverse osmosis developed by the Delft University of Technology in the Netherlands. Credit: Evgenia Rabinovitch

A traditional windmill which drives a pump: that is the simple concept behind the combination of windmill/reverse osmosis developed by the Delft University of Technology (TU Delft) in The Netherlands. In this case, it involves a high-pressure pump which pushes water through a membrane using approximately 60 bar. This reverse osmosis membrane produces fresh water from seawater directly. The windmill is suited for use by, for instance, small villages in isolated, dry coastal areas.

The combination of windmills and desalination installations is already commercially available. These windmills produce electricity from wind power, the electricity is stored and subsequently used to drive the high-pressure pump for the reverse osmosis installation. The storage of electricity in particular is very expensive. Energy is also lost during conversion.

In the TU Delft installation, the high-pressure pump is driven directly by wind power. Water storage can be used to overcome calm periods. The storage of water is after all a great deal cheaper than that of electricity.

The chosen windmill is normally used for irrigation purposes. These windmills turn relatively slowly and are also very robust. On the basis of the windmill’s capacity at varying wind speeds, it is estimated that it will produce 5 to 10 m3 of fresh water per day: enough drinking water for a small village of 500 inhabitants.

A water reservoir will have to ensure that enough water is available for a calm period lasting up to five days. Three safeguards (in the event of the installation running dry, a low number of revolutions or a high number of revolutions) are also performed mechanically so that no electricity is needed.

The first prototype has been built and is already working at a location near the A13 motorway near Delft. This prototype is to be dismantled and transported to Curaçao the first week of March. There the concept will be tested on seawater.

Source: Delft University of Technology

Explore further: Off-world manufacturing is a go with space printer

add to favorites email to friend print save as pdf

Related Stories

DNA through graphene nanopores

Jul 12, 2010

A team of researchers from Delft University of Technology (The Netherlands) announces a new type of nanopore devices that may significantly impact the way we screen DNA molecules, for example to read off their sequence. In ...

Recommended for you

Off-world manufacturing is a go with space printer

Dec 20, 2014

On Friday, the BBC reported on a NASA email exchange with a space station which involved astronauts on the International Space Station using their 3-D printer to make a wrench from instructions sent up in ...

First drone in Nevada test program crashes in demo

Dec 19, 2014

A drone testing program in Nevada is off to a bumpy start after the first unmanned aircraft authorized to fly without Federal Aviation Administration supervision crashed during a ceremony in Boulder City.

Fully automated: Thousands of blood samples every hour

Dec 19, 2014

Siemens is supplying automation technology for the longest and one of the most cutting-edge sample processing lines in any clinical laboratory. The line, or automation track, 200 meters long, in Marlborough, ...

Explainer: What is 4-D printing?

Dec 19, 2014

Additive manufacturing – or 3D printing – is 30 years old this year. Today, it's found not just in industry but in households, as the price of 3D printers has fallen below US$1,000. Knowing you can p ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.