Researcher investigates new developments in laser and sensor technology

Feb 21, 2008

Scientists hope that research being conducted in Binghamton University’s Department of Physics, Applied Physics and Astronomy will create lasers that work at wavelengths currently inaccessible.

Funded by a three-year, $300,000 grant from the National Science Foundation as well as a Cottrell College Science Award of $44,244 from the Research Corporation, Oana Malis, assistant professor of physics, is looking for new materials that would allow laser light to be generated in ranges that are not currently accessible. She is particularly interested in how the optical properties of gallium nitride, a compound semiconductor material, could be used.

“These lasers could be used for sensing such as in detecting environmental conditions in a building,” said Malis. “There are defense applications as well.”

In looking for new materials that would allow her to create lasers in the mid-infrared range, Malis is hoping nitrides are the answer. Their optical and electronic properties are not well understood, in part because they’re difficult to make.

The devices in question are incredibly small, less than a millimeter square. The material is like a sandwich of very thin layers, each about a nanometer or two thick. These hundreds or even thousands of layers give nitrides an interesting electronic structure and allow them to emit or absorb light in particular ranges.

“This is an ambitious project,” Malis said. “It’s the first few steps of the process. Getting to the device level, to an actual laser you can hold in your hand, is a little harder.”

She’s especially excited about this project because it will give undergraduate and graduate students experience in applied physics, including materials, advanced techniques such as electron microscopy and making devices and in theoretical modeling.

“I feel it’s important to involve students in applied research,” she said. “Physics students sometimes believe that physics is only about the cosmological level or broad strokes. In the end, physics is an experimental science. It has to do with reality, with the world around us.”

Malis said she tries to encourage her students to think freely and creatively and see that research is more than just following a certain procedure.

“I’m really interested in making things that work,” she said, “in understanding things that will make people’s lives better and will have a technological impact.”

Source: Binghamton University

Explore further: IHEP in China has ambitions for Higgs factory

add to favorites email to friend print save as pdf

Related Stories

Twitter admits to diversity problem in workforce

25 minutes ago

(AP)—Twitter acknowledged Wednesday that it has been hiring too many white and Asian men to fill high-paying technology jobs, just like several other major companies in Silicon Valley.

Recommended for you

IHEP in China has ambitions for Higgs factory

12 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

14 hours ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

The birth of topological spintronics

15 hours ago

The discovery of a new material combination that could lead to a more efficient approach to computer memory and logic will be described in the journal Nature on July 24, 2014. The research, led by Penn S ...

The electric slide dance of DNA knots

18 hours ago

DNA has the nasty habit of getting tangled and forming knots. Scientists study these knots to understand their function and learn how to disentangle them (e.g. useful for gene sequencing techniques). Cristian ...

User comments : 0