Hubble Discovers 67 New Gravitationally Lensed Galaxies in the Distant Universe

Feb 19, 2008
Hubble Discovers 67 New Gravitationally Lensed Galaxies in the Distant Universe
Credit: NASA, ESA, C. Faure (Zentrum Für Astronomie, University of Heidelberg) and J.P. Kneib (Laboratoire d'Astrophysique de Marseille)

Astronomers using NASA's Hubble Space Telescope have compiled a large catalog of gravitational lenses in the distant universe. The catalog contains 67 new gravitationally lensed galaxy images found around massive elliptical and lenticular-shaped galaxies. This sample demonstrates the rich diversity of strong gravitational lenses. If this sample is representative, there would be nearly half a million similar gravitational lenses over the whole sky.

The lenses come from a recently completed, large set of observations as part of a huge project to survey a single 1.6-square-degree field of sky (nine times the area of the full Moon) with several space-based and Earth-based observatories. The COSMOS project, led by Nick Scoville at the California Institute of Technology, used observations from several observatories including the Hubble Space Telescope, the Spitzer Space Telescope, the XMM-Newton spacecraft, the Chandra X-ray Observatory, the Very Large Telescope (VLT), the Subaru Telescope, and the Canada-France-Hawaii Telescope.

A team of European astronomers led by Jean-Paul Kneib (Laboratoire d'Astrophysique de Marseille) and Cecile Faure (Zentrum für Astronomie, University of Heidelberg) analyzed the results from Hubble's Advanced Camera for Surveys (ACS). From ACS high-resolution images, complemented by the extensive ground-based follow-up observations, astronomers have identified 67 strong gravitationally lensed galaxies. These lenses were found around very massive galaxies that are usually elliptical or lenticular in shape and have a deficiency of gas and dust.

The strong lensing produced by massive galaxies are much more common than the usual giant "arc" gravitationally lensed galaxies that Hubble has previously observed; but they are generally more difficult to find as they extend over a smaller area and have a wide variety of shapes.

Gravitational lensing occurs when light traveling toward us from a distant galaxy is magnified and distorted as it encounters a massive object between the galaxy and us. These gravitational lenses often allow astronomers to peer much farther back into the early universe than they would normally be able to do.

The massive objects that create the lenses are usually huge clusters of massive galaxies. "We typically see the gravitational lens create a series of bright arcs or spots around a galaxy cluster. What we are observing here is a similar effect but on a much smaller scale — happening only around a single but very massive galaxy," said Kneib.

Of the 67 gravitational lenses identified in the COSMOS survey, the most impressive lenses show the distorted and warped light of one or two background galaxies. At least four of the lenses produce Einstein rings, a complete circular image of a background galaxy, which is formed when the background galaxy, a massive, foreground galaxy, and the Hubble Space Telescope are all aligned perfectly.

Hubble astronomers went through a unique process to identify these incredible natural lenses. First, possible galaxies were identified from a galaxy catalog, comprising more than 2 million galaxies. "We then had to look through each individual COSMOS image by eye and identify any potential strong gravitational lenses," said Faure. Finally, checks were made to see if the foreground galaxy and the lensed galaxy were really different or just one galaxy with an odd shape. "With this sample of gravitational systems identified by the human eye, we now plan to use the sample of lenses to train robot software to find more of these lenses across the entire Hubble image archive, and we may find even more strong lensing systems in the COSMOS field," added Kneib.

The new results confirm that the universe is filled with gravitational lensing systems. Extrapolating these new findings to the whole sky predicts no less than half a million similar lenses in total.

The study of these gravitational lenses will give astronomers a first-rate opportunity to probe the dark matter distribution around galactic lenses. Once astronomers find even larger numbers of these smaller, stronger lenses, they can be used to create a census of galaxy masses in the universe to test the predictions of cosmological models.

Source: Hubble Centre

Explore further: Quest for extraterrestrial life not over, experts say

add to favorites email to friend print save as pdf

Related Stories

Cosmologists weigh cosmic filaments and voids

Apr 17, 2014

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Hubble image: A cross-section of the universe

Apr 17, 2014

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Image: Magnifying the distant universe

Apr 01, 2014

(Phys.org) —Galaxy clusters are some of the most massive structures that can be found in the Universe—large groups of galaxies bound together by gravity. This image from the NASA/ESA Hubble Space Telescope ...

Image: Gravitational lensing in galaxy YGKOW G1

Jan 27, 2014

(Phys.org) —In this new Hubble image two objects are clearly visible, shining brightly. When they were first discovered in 1979, they were thought to be separate objects—however, astronomers soon realized ...

Alan Guth on new insights into the 'Big Bang'

Mar 20, 2014

Earlier this week, scientists announced that a telescope observing faint echoes of the so-called "Big Bang" had found evidence of the universe's nearly instantaneous expansion from a mere dot into a dense ...

Recommended for you

Quest for extraterrestrial life not over, experts say

Apr 18, 2014

The discovery of an Earth-sized planet in the "habitable" zone of a distant star, though exciting, is still a long way from pointing to the existence of extraterrestrial life, experts said Friday. ...

Continents may be a key feature of Super-Earths

Apr 18, 2014

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Exoplanets soon to gleam in the eye of NESSI

Apr 18, 2014

(Phys.org) —The New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI) will soon get its first "taste" of exoplanets, helping astronomers decipher their chemical composition. Exoplanets are planets ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

earls
5 / 5 (1) Feb 19, 2008

More news stories

Another fireball explodes over Russia

Why does Russia seem to get so many bright meteors? Well at 6.6 million square miles it's by far the largest country in the world plus, with dashboard-mounted cameras being so commonplace (partly to help ...

ISEE-3 comes to visit Earth

(Phys.org) —It launched in 1978. It was the first satellite to study the constant flow of solar wind streaming toward Earth from a stable orbit point between our planet and the sun known as the Lagrangian ...

NASA's MMS observatories stacked for testing

(Phys.org) —Engineers at NASA's Goddard Space Flight Center in Greenbelt, Md., accomplished another first. Using a large overhead crane, they mated two Magnetospheric Multiscale, or MMS, observatories – ...