Hubble Discovers 67 New Gravitationally Lensed Galaxies in the Distant Universe

Feb 19, 2008
Hubble Discovers 67 New Gravitationally Lensed Galaxies in the Distant Universe
Credit: NASA, ESA, C. Faure (Zentrum Für Astronomie, University of Heidelberg) and J.P. Kneib (Laboratoire d'Astrophysique de Marseille)

Astronomers using NASA's Hubble Space Telescope have compiled a large catalog of gravitational lenses in the distant universe. The catalog contains 67 new gravitationally lensed galaxy images found around massive elliptical and lenticular-shaped galaxies. This sample demonstrates the rich diversity of strong gravitational lenses. If this sample is representative, there would be nearly half a million similar gravitational lenses over the whole sky.

The lenses come from a recently completed, large set of observations as part of a huge project to survey a single 1.6-square-degree field of sky (nine times the area of the full Moon) with several space-based and Earth-based observatories. The COSMOS project, led by Nick Scoville at the California Institute of Technology, used observations from several observatories including the Hubble Space Telescope, the Spitzer Space Telescope, the XMM-Newton spacecraft, the Chandra X-ray Observatory, the Very Large Telescope (VLT), the Subaru Telescope, and the Canada-France-Hawaii Telescope.

A team of European astronomers led by Jean-Paul Kneib (Laboratoire d'Astrophysique de Marseille) and Cecile Faure (Zentrum für Astronomie, University of Heidelberg) analyzed the results from Hubble's Advanced Camera for Surveys (ACS). From ACS high-resolution images, complemented by the extensive ground-based follow-up observations, astronomers have identified 67 strong gravitationally lensed galaxies. These lenses were found around very massive galaxies that are usually elliptical or lenticular in shape and have a deficiency of gas and dust.

The strong lensing produced by massive galaxies are much more common than the usual giant "arc" gravitationally lensed galaxies that Hubble has previously observed; but they are generally more difficult to find as they extend over a smaller area and have a wide variety of shapes.

Gravitational lensing occurs when light traveling toward us from a distant galaxy is magnified and distorted as it encounters a massive object between the galaxy and us. These gravitational lenses often allow astronomers to peer much farther back into the early universe than they would normally be able to do.

The massive objects that create the lenses are usually huge clusters of massive galaxies. "We typically see the gravitational lens create a series of bright arcs or spots around a galaxy cluster. What we are observing here is a similar effect but on a much smaller scale — happening only around a single but very massive galaxy," said Kneib.

Of the 67 gravitational lenses identified in the COSMOS survey, the most impressive lenses show the distorted and warped light of one or two background galaxies. At least four of the lenses produce Einstein rings, a complete circular image of a background galaxy, which is formed when the background galaxy, a massive, foreground galaxy, and the Hubble Space Telescope are all aligned perfectly.

Hubble astronomers went through a unique process to identify these incredible natural lenses. First, possible galaxies were identified from a galaxy catalog, comprising more than 2 million galaxies. "We then had to look through each individual COSMOS image by eye and identify any potential strong gravitational lenses," said Faure. Finally, checks were made to see if the foreground galaxy and the lensed galaxy were really different or just one galaxy with an odd shape. "With this sample of gravitational systems identified by the human eye, we now plan to use the sample of lenses to train robot software to find more of these lenses across the entire Hubble image archive, and we may find even more strong lensing systems in the COSMOS field," added Kneib.

The new results confirm that the universe is filled with gravitational lensing systems. Extrapolating these new findings to the whole sky predicts no less than half a million similar lenses in total.

The study of these gravitational lenses will give astronomers a first-rate opportunity to probe the dark matter distribution around galactic lenses. Once astronomers find even larger numbers of these smaller, stronger lenses, they can be used to create a census of galaxy masses in the universe to test the predictions of cosmological models.

Source: Hubble Centre

Explore further: Using 19th century technology to time travel to the stars

add to favorites email to friend print save as pdf

Related Stories

Distant supernova split four ways by gravitational lens

Mar 05, 2015

Over the past several decades, astronomers have come to realize that the sky is filled with magnifying glasses that allow the study of very distant and faint objects barely visible with even the largest telescopes.

Image: Smile, and the universe smiles with you

Feb 11, 2015

An upbeat-looking galaxy cluster appears to smile at us in a newly released image from the NASA/ESA Hubble Space Telescope. The cluster - designated as SDSS J1038+4849 - appears to have two eyes and a nose ...

Recommended for you

Galaxy clusters collide—dark matter still a mystery

12 hours ago

When galaxy clusters collide, their dark matters pass through each other, with very little interaction. Deepening the mystery, a study by scientists at EPFL and the University of Edinburgh challenges the ...

Using 19th century technology to time travel to the stars

16 hours ago

In the late 19th century, astronomers developed the technique of capturing telescopic images of stars and galaxies on glass photographic plates. This allowed them to study the night sky in detail. Over 500,000 ...

Automation offers big solution to big data in astronomy

Mar 24, 2015

It's almost a rite of passage in physics and astronomy. Scientists spend years scrounging up money to build a fantastic new instrument. Then, when the long-awaited device finally approaches completion, the ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

earls
5 / 5 (1) Feb 19, 2008

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.