Spitzer Catches Young Stars in Their Baby Blanket of Dust

Feb 11, 2008
Spitzer Catches Young Stars in Their Baby Blanket of Dust
Newborn stars peek out from beneath their natal blanket of dust in this dynamic image of the Rho Ophiuchi dark cloud from NASA's Spitzer Space Telescope. Called "Rho Oph" by astronomers, it's one of the closest star-forming regions to our own solar system. Image credit: NASA/JPL-Caltech/Harvard-Smithsonian CfA

Newborn stars peek out from beneath their natal blanket of dust in this dynamic image of the Rho Ophiuchi dark cloud from NASA's Spitzer Space Telescope.

Called "Rho Oph" by astronomers, it's one of the closest star-forming regions to our own solar system. Located near the constellations Scorpius and Ophiuchus, the nebula is about 407 light years away from Earth.

Rho Oph is made up of a large main cloud of molecular hydrogen, a key molecule allowing new stars to form out of cold cosmic gas, with two long streamers trailing off in different directions. Recent studies using the latest X-ray and infrared observations reveal more than 300 young stellar objects within the large central cloud. Their median age is only 300,000 years, very young compared to some of the universe's oldest stars, which are more than 12 billion years old.

"Rho Oph is a favorite region for astronomers studying star formation. Because the stars are so young, we can observe them at a very early evolutionary stage, and because the Ophiuchus molecular cloud is relatively close, we can resolve more detail than in more distant clusters, like Orion," said Lori Allen, lead investigator of the new observations, from the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.

This false-color image of Rho Oph's main cloud, Lynds 1688, was created with data from Spitzer's infrared array camera, which has the highest spatial resolution of Spitzer's three imaging instruments, and its multiband imaging photometer, best for detecting cooler materials.

The colors in this image reflect the relative temperatures and evolutionary states of the various stars. The youngest stars are surrounded by dusty disks of gas from which they and their potential planetary systems are forming. These young disk systems show up as red in this image. Some of these young stellar objects are surrounded by their own compact nebulae. More evolved stars, which have shed their natal material, are blue.

The extended white nebula in the center right of the image is a region of the cloud glowing in infrared light due to the heating of dust by bright young stars near the cloud's right edge. Fainter, multi-hued diffuse emission fills the image. The color of the nebulosity depends on the temperature, composition and size of the dust grains. Most of the stars forming now are concentrated in a filament of cold, dense gas that shows up as a dark cloud in the lower center and left side of the image against the bright background of the warm dust.

Source: NASA

Explore further: The riddle of galactic thin–thick disk solved

Related Stories

In the realm of eternal ice

Apr 23, 2015

On 6 November 2010, the light of the star known as NOMAD1 0856-0015072 in the Cetus constellation dimmed. What had happened? A dwarf planet at the edge of the solar system had moved in front of the distant ...

Titan's atmosphere useful in study of hazy exoplanets

Apr 23, 2015

With more than a thousand confirmed planets outside of our solar system, astronomers are attempting to identify the atmospheres of these distant bodies to determine if they could possibly host life.

Celestial fireworks celebrate Hubble's 25th anniversary

Apr 23, 2015

The glittering tapestry of young stars flaring to life in this new NASA/ESA Hubble Space Telescope image aptly resembles an exploding shell in a fireworks display. This vibrant image of the star cluster Westerlund ...

Recommended for you

The riddle of galactic thin–thick disk solved

Apr 24, 2015

A long-standing puzzle regarding the nature of disk galaxies has finally been solved by a team of astronomers led by Ivan Minchev from the Leibniz Institute for Astrophysics Potsdam (AIP), using state-of-the-art ...

Giant cosmic tsunami wakes up comatose galaxies

Apr 24, 2015

Galaxies are often found in clusters, with many 'red and dead' neighbours that stopped forming stars in the distant past. Now an international team of astronomers, led by Andra Stroe of Leiden Observatory ...

Astronomers find runaway galaxies

Apr 23, 2015

We know of about two dozen runaway stars, and have even found one runaway star cluster escaping its galaxy forever. Now, astronomers have spotted 11 runaway galaxies that have been flung out of their homes ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.