Deep Impact Begins Hunt for Alien Worlds

Feb 08, 2008
Deep Impact Begins Hunt for Alien Worlds
Artist concept of Epoxi. Image credit: NASA/JPL

NASA's Deep Impact spacecraft is aiming its largest telescope at five stars in a search for alien (exosolar) planets as it enters its extended mission, called Epoxi.

Deep Impact made history when the mission team directed an impactor from the spacecraft into comet Tempel 1 on July 4, 2005. NASA recently extended the mission, redirecting the spacecraft for a flyby of comet Hartley 2 on Oct. 11, 2010.

As it cruises toward the comet, Deep Impact will observe five nearby stars with "transiting exosolar planets," so named because the planet transits, or passes in front of, its star. The Epoxi team, led by University of Maryland astronomer Michael A'Hearn, directed the spacecraft to begin these observations Jan. 22. The planets were discovered earlier and are giant planets with massive atmospheres, like Jupiter in our solar system. They orbit their stars much closer than Earth does the sun, so they are hot and belong to the class of exosolar planets nicknamed "Hot Jupiters."

However, these giant planets may not be alone. If there are other worlds around these stars, they might also transit the star and be discovered by the spacecraft. Deep Impact can even find planets that don't transit, using a timing technique. Gravity from the unseen planets will pull on the transiting planets, altering their orbits and the timing of their transits.

"We're on the hunt for planets down to the size of Earth, orbiting some of our closest neighboring stars," said Epoxi Deputy Principal Investigator Drake Deming of NASA's Goddard Space Flight Center in Greenbelt, Md. Epoxi is a combination of the names for the two extended mission components: the exosolar planet observations, called Extrasolar Planet Observations and Characterization (Epoch), and the flyby of comet Hartley 2, called the Deep Impact Extended Investigation (Dixi). Goddard leads the Epoch component.

More than 200 exosolar planets have been discovered to date. Most of these are detected indirectly, by the gravitational pull they exert on their parent star. Directly observing exosolar planets by detecting the light reflected from them is very difficult, because a star's brilliance obscures light coming from any planets orbiting it.

However, sometimes the orbit of an exosolar world is aligned so that it eclipses its star as seen from Earth. In these rare cases, called transits, light from that planet can be seen directly.

"When the planet appears next to its star, your telescope captures their combined light. When the planet passes behind its star, your telescope only sees light from the star. By subtracting light from just the star from the combined light, you are left with light from the planet," said Deming, who is leading the search for exosolar worlds with Deep Impact. "We can analyze this light to discover what the atmospheres of these planets are like."

Deep Impact will also look back to observe Earth in visible and infrared wavelengths, allowing comparisons with future discoveries of Earth-like planets around other stars.

Source: NASA

Explore further: Red moon at night; stargazer's delight

add to favorites email to friend print save as pdf

Related Stories

NASA Sends Spacecraft on Mission to Comet Hartley 2

Dec 14, 2007

NASA has approved the retargeting of the EPOXI mission for a flyby of comet Hartley 2 on Oct. 11, 2010. Hartley 2 was chosen as EPOXI's destination after the initial target, comet Boethin, could not be found. ...

Recommended for you

Red moon at night; stargazer's delight

15 hours ago

Monday night's lunar eclipse proved just as delightful as expected to those able to view it. On the East Coast, cloudy skies may have gotten in the way, but at the National Science Foundation's National Optical ...

Meteorites yield clues to Martian early atmosphere

17 hours ago

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Let's put a sailboat on Titan

20 hours ago

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn's largest moon, is the only natural satellite known to house a thick atmosphere. ...

Image: Rosetta's Philae lander snaps a selfie

20 hours ago

Philae is awake… and taking pictures! This image, acquired last night with the lander's CIVA (Comet nucleus Infrared and Visible Analyzer) instrument, shows the left and right solar panels of ESA's well-traveled ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

holoman
1 / 5 (2) Feb 08, 2008
Good Job NASA Folks !

Great Science to be learned.
out7x
1 / 5 (1) Feb 09, 2008
What is the spectral resolution of the light from the planet?
tomphys
1 / 5 (1) Feb 13, 2008
Bugger, sorry holoman i clicked that rating by accident!
Your right though this is a great field with lots just waiting to be discovered.

More news stories

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Let's put a sailboat on Titan

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn's largest moon, is the only natural satellite known to house a thick atmosphere. ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...