Optical Atomic Clock: A long look at the captured atoms

Feb 05, 2008

Optical clocks might become the atomic clocks of the future. Their "pendulum", i.e. the regular oscillation process which each clock needs, is an oscillation in the range of the visible light. As its frequency is higher than that of the microwave oscillations of the cesium atomic clocks, physicists expect another increase in the accuracy, stability and reliability.

In the case of one of the candidates for an optical clock which is developed at Physikalisch-Technische Bundesanstalt (PTB), strontium atoms are retained in the interference pattern of two laser beams.

In this so-called "optical grating" the atomic "pendulum", i.e. the absorption frequency of the atoms, can then be measured very exactly. For this optical grating clock, the loading of cold atoms into an optical grating has been optimized to such an extent that approx. 106 strontium atoms are loaded into the grating within 150 milliseconds at a temperature of a few microkelvin.

There, the atoms remain stored for over one second and are available for a precision measurement of the optical frequency.

This value would serve for the redefinition of the base unit "second" provided that additional investigations and international comparison show that this frequency can be determined with sufficient accuracy.

Source: Physikalisch-Technische Bundesanstalt

Explore further: Boron-based atomic clusters mimic rare-earth metals

Related Stories

Boron-based atomic clusters mimic rare-earth metals

Apr 17, 2015

Rare Earth elements, found in the f-block of the periodic table, have particular magnetic and optical properties that make them valuable commodities. This has been particularly true over the last thirty years ...

Super sensitive measurement of magnetic fields

Mar 30, 2015

There are electrical signals in the nervous system, the brain and throughout the human body and there are tiny magnetic fields associated with these signals that could be important for medical science. Researchers ...

Electron spins controlled using sound waves

Mar 09, 2015

The ability to control the intrinsic angular momentum of individual electrons – their "spins" – could lead to a world of new technologies that involve storing and processing information.

Quantum mechanic frequency filter for atomic clocks

Mar 09, 2015

Atomic clocks are the most accurate clocks in the world. In an atomic clock, electrons jumping from one orbit to another decides the clock's frequency. To get the electrons to jump, researchers shine light ...

Recommended for you

Accurately counting ions from laboratory radiation exposure

Apr 15, 2015

Thermoluminescence is used extensively in archaeology and the earth sciences to date artifacts and rocks. When exposed to radiation, quartz emits light proportional to the energy it absorbs. Replicating the very low dose ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.