NIST helps heat pumps 'go with the flow' to boost output

Jan 23, 2008
NIST helps heat pumps 'go with the flow' to boost output
A sheet of laser light illuminating the surface of the heat exchanger during the air velocity measurement experiment. Credit: NIST

Air-source heat pumps typically deliver 1 1/2 to three times more heating energy to a home than the electric energy they consume. This is possible because heat pumps move heat rather than convert it from a fuel (as combustion heating systems do). National Institute for Standards and Technology researchers are working to improve the performance of these energy superstars even further by providing engineers with computer-based tools for optimizing heat exchanger designs.

In a typical air-source heat pump, air flows over two refrigerant-filled heat exchangers (known as coils): one indoor and the other outdoor, both of which have metal fins to aid heat transfer. In the heating mode, liquid refrigerant within the outside coil extracts heat from the air and the refrigerant evaporates into a gas. The indoor coil releases heat from the refrigerant as it condenses back into a liquid. A valve near the compressor can change the direction of the refrigerant flow for cooling.

Performance of air-to-refrigerant heat exchangers can be reduced by uneven air flow distribution. However, performance degradation can be significantly avoided by design changes that increase refrigerant flow in areas that receive more air. To achieve this, one must ascertain the actual air distribution in a given system.

NIST researchers have developed a testing apparatus that uses a high-resolution camera to track—with laser-illuminated dust particles—the motion and distribution of air flow in finned-tube heat exchangers. Data from these highly accurate laboratory experiments are being compared with computer simulations of air flow performed with computational fluid dynamics (CFD) software. Once accurate CFD models are developed and validated, engineers could use them as the basis for design changes to coil assemblies and refrigerant circuitries to accommodate the existing air distribution.

The NIST program, partially sponsored by the Air-Conditioning and Refrigeration Technology Institute (ARTI) under a Cooperative Research and Development Agreement (CRADA), could increase finned-tube heat exchanger heating or cooling capacity by five percent, resulting in improved heat pump efficiency. Additionally, such improvements could allow manufacturers to reduce the heat exchanger size, thereby reducing material cost and the amount of refrigerant needed. The NIST study results on home air-source heat pumps will be issued in 2009 and are also expected to be applicable to large heat exchangers used in commercial buildings and refrigeration systems.

For further information, go to www.bfrl.nist.gov/863/HVAC

Source: National Institute of Standards and Technology

Explore further: A smart prosthetic knee with in-vivo diagnoses

add to favorites email to friend print save as pdf

Related Stories

Refrigerant in cars: Refreshingly cool, potentially toxic

Apr 09, 2014

The refrigerant R1234yf is being considered for use in air conditioning systems in cars. Chemists at Ludwig-Maximilians-Universitaet (LMU) in Munich now show that, in the event of a fire, it releases the highly poisonous ...

The promise and peril of nanotechnology

Mar 26, 2014

Scientists at Northwestern University have found a way to detect metastatic breast cancer by arranging strands of DNA into spherical shapes and using them to cover a tiny particle of gold, creating a "nano-flare" ...

Energy savings in the kitchen

Feb 11, 2014

Because the kitchen contains many large and small appliances that are used daily, the kitchen is a good area to reduce energy.

Air conditioner 'evolves' in novel study

Sep 04, 2013

Played out on a computer over hundreds of generations, a survival-of-the-fittest programming method adapted by National Institute of Standards and Technology (NIST) researchers has spawned, of all things, ...

Recommended for you

A smart prosthetic knee with in-vivo diagnoses

Apr 22, 2014

The task was to develop intelligent prosthetic joints that, via sensors, are capable of detecting early failure long before a patient suffers. EPFL researchers have taken up the challenge.

Old tires become material for new and improved roads

Apr 22, 2014

(Phys.org) —Americans generate nearly 300 million scrap tires every year, according to the Environmental Protection Agency (EPA). Historically, these worn tires often end up in landfills or, when illegally ...

Students take clot-buster for a spin

Apr 21, 2014

(Phys.org) —In the hands of some Rice University senior engineering students, a fishing rod is more than what it seems. For them, it's a way to help destroy blood clots that threaten lives.

User comments : 0

More news stories

Is nuclear power the only way to avoid geoengineering?

"I think one can argue that if we were to follow a strong nuclear energy pathway—as well as doing everything else that we can—then we can solve the climate problem without doing geoengineering." So says Tom Wigley, one ...

Cyber buddy is better than 'no buddy'

A Michigan State University researcher is looking to give exercise enthusiasts the extra nudge they need during a workout, and her latest research shows that a cyber buddy can help.