Brookhaven Scientists Working Toward Practical Hydrogen-Storage Materials

Mar 15, 2006
Peter Sutter
Peter Sutter

Hydrogen-storage materials hold the promise of supporting many exciting new technologies, such as clean, efficient hydrogen fuel cells for automobiles. At the U.S. Department of Energy’s Brookhaven National Laboratory, scientists are working toward this goal by studying the basic mechanisms that underlie reversible hydrogen storage in certain materials.

Currently, a main factor limiting the development of hydrogen-based energy technologies, such as fuel cells, is the ability to store a sufficient amount of hydrogen in a way that allows for easy and safe refueling. One of the most promising materials is titanium-doped sodium alanate, a type of material known as a “complex metal hydride.” Sodium alanate, on its own, is able to store and release a reasonable amount of hydrogen, but refueling the spent material requires it to be “doped” with a small amount of titanium. The titanium atoms allow sodium alanate to work efficiently at realistic temperatures and pressures.

“Our work focuses on how titanium atoms facilitate the hydrogen uptake in sodium alanate,” said Brookhaven material scientist Peter Sutter, a member of the research team. “Understanding the atomic mechanisms that govern this process will guide us in a targeted search for a viable material for large-scale hydrogen storage.”

A key step in the refueling process is the splitting of incoming hydrogen molecules (hydrogen atoms tend to bind in pairs) into single hydrogen atoms. The hydrogen then combines with aluminum and sodium to form crystalline sodium alanate. Sutter and his colleagues predict that the titanium atoms bind to the aluminum atoms in such a way as to create “active sites” where hydrogen molecules are separated and ultimately incorporated. These active sites are being studied experimentally using scanning tunneling microscopy, a powerful imaging technique that is able to image individual atoms at surfaces.

Erik Muller, a postdoctoral student working with Sutter and a research associate in Brookhaven’s hydrogen storage research team, will discuss their results at the March meeting of the American Physical Society in Baltimore, Maryland. He will give his talk at 9:48 a.m. on Wednesday, March 15, in Room 312 of the Baltimore Convention Center.

This research is funded by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science.

Source: BNL, by Laura Mgrdichian

Explore further: World's largest particle collider ready to restart in 'days'

Related Stories

Water Motions Revealed (w/ Video)

May 21, 2010

(PhysOrg.com) -- Gaze into a glass of water, and you're unlikely to see much more than your own reflection. But gaze a little deeper using a microscope -- or, better yet, a series of laser pulses and detectors ...

Recommended for you

Soft, energy-efficient robotic wings

18 hours ago

Dielectric elastomers are novel materials for making actuators or motors with soft and lightweight properties that can undergo large active deformations with high-energy conversion efficiencies. This has ...

Trapping and watching motile cells

21 hours ago

A new approach enables rapid characterization of living suspension cells in 4 dimensions while they are immobilized and manipulated within optical traps.

Controlling defects in engineered liquid crystals

22 hours ago

Sitting with a joystick in the comfort of their chairs, scientists can play "rodeo" on a screen magnifying what is happening under their microscope. They rely on optical tweezers to manipulate an intangible ring created out ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.