Brookhaven Scientists Working Toward Practical Hydrogen-Storage Materials

Mar 15, 2006
Peter Sutter
Peter Sutter

Hydrogen-storage materials hold the promise of supporting many exciting new technologies, such as clean, efficient hydrogen fuel cells for automobiles. At the U.S. Department of Energy’s Brookhaven National Laboratory, scientists are working toward this goal by studying the basic mechanisms that underlie reversible hydrogen storage in certain materials.

Currently, a main factor limiting the development of hydrogen-based energy technologies, such as fuel cells, is the ability to store a sufficient amount of hydrogen in a way that allows for easy and safe refueling. One of the most promising materials is titanium-doped sodium alanate, a type of material known as a “complex metal hydride.” Sodium alanate, on its own, is able to store and release a reasonable amount of hydrogen, but refueling the spent material requires it to be “doped” with a small amount of titanium. The titanium atoms allow sodium alanate to work efficiently at realistic temperatures and pressures.

“Our work focuses on how titanium atoms facilitate the hydrogen uptake in sodium alanate,” said Brookhaven material scientist Peter Sutter, a member of the research team. “Understanding the atomic mechanisms that govern this process will guide us in a targeted search for a viable material for large-scale hydrogen storage.”

A key step in the refueling process is the splitting of incoming hydrogen molecules (hydrogen atoms tend to bind in pairs) into single hydrogen atoms. The hydrogen then combines with aluminum and sodium to form crystalline sodium alanate. Sutter and his colleagues predict that the titanium atoms bind to the aluminum atoms in such a way as to create “active sites” where hydrogen molecules are separated and ultimately incorporated. These active sites are being studied experimentally using scanning tunneling microscopy, a powerful imaging technique that is able to image individual atoms at surfaces.

Erik Muller, a postdoctoral student working with Sutter and a research associate in Brookhaven’s hydrogen storage research team, will discuss their results at the March meeting of the American Physical Society in Baltimore, Maryland. He will give his talk at 9:48 a.m. on Wednesday, March 15, in Room 312 of the Baltimore Convention Center.

This research is funded by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science.

Source: BNL, by Laura Mgrdichian

Explore further: Researchers discover low-grade nonwoven cotton picks up 50 times own weight of oil

add to favorites email to friend print save as pdf

Related Stories

Why let your sales force influence product prices?

26 minutes ago

From the outside, you might not notice the ongoing tension within many large businesses: the battle between salespeople, on the one hand, and marketers and product managers, on the other. Because the salespeople ...

Breakthrough elastic cloud-to cloud networking

58 minutes ago

Scientists from AT&T, IBM and Applied Communication Sciences (ACS) announced a proof-of-concept technology that reduces set up times for cloud-to-cloud connectivity from days to seconds. This advance is a major step forward ...

Groundwater is safe in potential N.Y. fracking area

16 minutes ago

Two Cornell hydrologists have completed a thorough groundwater examination of drinking water in a potential hydraulic fracturing area in New York's Southern Tier. They determined that drinking water in potable ...

Recommended for you

Refocusing research into high-temperature superconductors

9 hours ago

Below a specific transition temperature superconductors transmit electrical current nearly loss-free. For the best of the so-called high-temperature superconductors, this temperature lies around -180 °C – a temperature ...

MRI for a quantum simulation

15 hours ago

Magnetic resonance imaging (MRI), which is the medical application of nuclear magnetic resonance spectroscopy, is a powerful diagnostic tool. MRI works by resonantly exciting hydrogen atoms and measuring ...

50-foot-wide Muon g-2 electromagnet installed at Fermilab

15 hours ago

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

User comments : 0