Toward improved non-stick surfaces at the flip of a switch

Dec 24, 2007

Researchers in New Jersey report development of a new type of non-stick material whose ability to shed liquids like water from a duck’s back can be turned on or off simply by flipping an electrical switch.

The material, called “nanonails,” offers a wide-range of potential applications including contamination-resistant and self-cleaning surfaces, reduced-drag ships, and advanced electrical batteries, they say. Their study is scheduled for the Jan. 1 issue of ACS’ Langmuir.

For years, researchers sought to develop surfaces that repel virtually any liquid. They’ve created non-stick surfaces that repel water and certain other liquids, but have had little success with repelling common organic liquids such as oils, solvents and detergents.

Tom N. Krupenkin and colleagues report that their “nanonails” have all-purpose repellency properties. The nails actually are submicroscopic silicon structures shaped like carpenter’s nails that dramatically enhance a surface’s repellency. However, the surface becomes highly wettable when electricity is applied, allowing liquid to be sucked between the nails.

In laboratory demonstrations, the researchers showed that their electronic non-stick surface works effectively using virtually any liquid.

“Nanonails” also show promise for enhancing chemical microreactions, decreasing flow resistance, and facilitating liquid movement for medical diagnostic applications such as lab-on-a-chip technology, they say.

Source: ACS

Explore further: Thinnest feasible nano-membrane produced

add to favorites email to friend print save as pdf

Related Stories

New surface treatment stops scale buildup

Jan 22, 2014

Scale, as these deposits are known, causes inefficiencies, downtime, and maintenance issues. In the oil and gas industry, scale has sometimes led to the complete shutdown, at least temporarily, of operating ...

Recommended for you

Thinnest feasible nano-membrane produced

22 hours ago

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Continents may be a key feature of Super-Earths

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...