Toward improved non-stick surfaces at the flip of a switch

Dec 24, 2007

Researchers in New Jersey report development of a new type of non-stick material whose ability to shed liquids like water from a duck’s back can be turned on or off simply by flipping an electrical switch.

The material, called “nanonails,” offers a wide-range of potential applications including contamination-resistant and self-cleaning surfaces, reduced-drag ships, and advanced electrical batteries, they say. Their study is scheduled for the Jan. 1 issue of ACS’ Langmuir.

For years, researchers sought to develop surfaces that repel virtually any liquid. They’ve created non-stick surfaces that repel water and certain other liquids, but have had little success with repelling common organic liquids such as oils, solvents and detergents.

Tom N. Krupenkin and colleagues report that their “nanonails” have all-purpose repellency properties. The nails actually are submicroscopic silicon structures shaped like carpenter’s nails that dramatically enhance a surface’s repellency. However, the surface becomes highly wettable when electricity is applied, allowing liquid to be sucked between the nails.

In laboratory demonstrations, the researchers showed that their electronic non-stick surface works effectively using virtually any liquid.

“Nanonails” also show promise for enhancing chemical microreactions, decreasing flow resistance, and facilitating liquid movement for medical diagnostic applications such as lab-on-a-chip technology, they say.

Source: ACS

Explore further: Scientists fabricate defect-free graphene, set record reversible capacity for Co3O4 anode in Li-ion batteries

add to favorites email to friend print save as pdf

Related Stories

New surface treatment stops scale buildup

Jan 22, 2014

Scale, as these deposits are known, causes inefficiencies, downtime, and maintenance issues. In the oil and gas industry, scale has sometimes led to the complete shutdown, at least temporarily, of operating ...

Recommended for you

Copper shines as flexible conductor

Aug 22, 2014

Bend them, stretch them, twist them, fold them: modern materials that are light, flexible and highly conductive have extraordinary technological potential, whether as artificial skin or electronic paper.

Nanoparticles may aid oil recovery, frack fluid tracking

Aug 22, 2014

Two Colorado State University researchers are examining how nanoparticles move underground, knowledge that could eventually help improve recovery in oil fields and discover where hydraulic fracking chemicals ...

Nanostructure enlightening dendrite-free metal anode

Aug 19, 2014

Graphite anodes have been widely used for lithium ion batteries (LIBs) during the past two decades. The replacement of metallic lithium with graphite enables safe and highly efficient operation of LIBs, however, ...

User comments : 0