Metal Foam Has a Good Memory

Dec 18, 2007
Metal Foam Has a Good Memory
The porous nature of nickel-manganese-gallium alloy gives it "shape-memory" properties. The material lengthens, or strains, up to 10 percent when subjected to a magnetic field. The NSF-funded researchers believe the porous alloy has great potential for uses that require light weight and a large strain, such as space and automotive applications and tiny motion control devices or biomedical pumps with no moving parts. Credit: P. Müllner and M. Chmelius, Boise State University, and D. Dunand and Y. Boonyoungmaneerat, Northwestern University

In the world of commercial materials, lighter and cheaper is usually better, especially when those attributes are coupled with superior strength and special properties, such as a material's ability to remember its original shape after it's been deformed by a physical or magnetic force.

A new class of materials known as "magnetic shape-memory foams" has been developed by two research teams headed by Peter Müllner at Boise State University and David Dunand at Northwestern University, both funded by the National Science Foundation.

The foam consists of a nickel-manganese-gallium alloy whose structure resembles a piece of Swiss cheese with small voids of space between thin, curvy "struts" of material. The struts have a bamboo-like grain structure that can lengthen, or strain, up to 10 percent when a magnetic field is applied. Strain is the degree to which a material deforms under load.

In this instance, the force came from a magnetic field rather a physical load. Force from magnetic fields can be exerted over long range, making them advantageous for many applications. The alloy material retains its new shape when the field is turned off, but the magnetically sensitive atomic structure returns to its original structure if the field is rotated 90 degrees--a phenomenon called "magnetic shape-memory."

Making large single crystals of the alloy material is too slow and expensive to be commercially viable -- one of the reasons why gems are so costly -- so the researchers make polycrystalline alloys, which contain many small crystals or grains. Traditional polycrystalline materials are not porous and exhibit near zero strains due to mechanical constraints at the boundaries between each grain.

In contrast, a single crystal exhibits a large strain as there are no internal boundaries. By introducing voids into the polycrystalline alloy, the researchers have made a porous material that has less internal mechanical constraint and exhibits a reasonably large degree of strain.

The researchers created the new material by pouring molten alloy into a piece of porous sodium aluminate salt. Once the material cooled, they leached out the salt with acid, leaving behind large voids. The researchers then exposed the porous alloy to a rotating magnetic field. The level of strain achieved after each of the over 10 million rotations is consistent with the best currently used magnetic actuators, and Müllner and Dunand expect to significantly improve the strain when they have further optimized the foam's architecture.

"The base alloy material was previously known, but it wasn't very effective for shape-memory applications," Dunand said. "The porous nature of the material amplifies the shape-change effect, making it a good candidate for tiny motion control devices or biomedical pumps without moving parts."

NSF Program Director Harsh Deep Chopra agrees. "It's the first foam to exhibit magnetic shape memory - it has great potential for uses that require a large strain and light weight such as space applications and automobiles. These materials are able to do more with less material given their foamy structure and provide a sustainable approach to materials development."

Source: NSF

Explore further: Global scientific team 'visualizes' a new crystallization process (w/ video)

add to favorites email to friend print save as pdf

Related Stories

New magnetic materials for extracting energy from tides

Mar 26, 2014

The objective of the MAGNETIDE project is to develop a new type of generator that transforms the mechanical energy produced by the movement of the tides into electric energy. Researchers have modified the ...

3-D printing yields advantages for US ITER engineers

Mar 12, 2014

(Phys.org) —ITER, the international fusion research facility now under construction in St. Paul-lez-Durance, France, has been called a puzzle of a million pieces. US ITER staff at Oak Ridge National Laboratory ...

Advances in glass alloys lead to strength, flexibility

Mar 04, 2014

(Phys.org) —What do some high-end golf clubs and your living room window have in common? The answer is glass, but in the golf clubs' case it's a specialized glass product, called metallic glass, with the ...

Recommended for you

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

Probing metal solidification nondestructively

Apr 14, 2014

(Phys.org) —Los Alamos researchers and collaborators have used nondestructive imaging techniques to study the solidification of metal alloy samples. The team used complementary methods of proton radiography ...

Glasses strong as steel: A fast way to find the best

Apr 13, 2014

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

tikay
not rated yet Dec 18, 2007
This is great news, I cant wait to hover above the ground in my new space alloy vehicle. I have dreampt of doing that since I was a wee child.
~t.k.

More news stories

Researchers see hospitalization records as additional tool

Comparing hospitalization records with data reported to local boards of health presents a more accurate way to monitor how well communities track disease outbreaks, according to a paper published April 16 in the journal PLOS ON ...

Ebola virus in Africa outbreak is a new strain

Scientists say that the Ebola (ee-BOH'-lah) virus that has killed scores of people this year in Guinea (GIH'-nee) is a new strain. That means it did not spread there from outbreaks in some other African nations.