'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy

Dec 17, 2007
'Death Star' Galaxy Black Hole Fires at Neighboring Galaxy
A black hole jet at the center of a galaxy strikes the edge of another galaxy. Image Credit: X-ray: NASA/CXC/ CfA/D.Evans et al.; Optical/UV: NASA/ STScI; Radio: NSF/VLA/CfA/D.Evans et al., STFC/JBO/MERLIN

A powerful jet from a super massive black hole is blasting a nearby galaxy, according to new findings from NASA observatories. This never-before witnessed galactic violence may have a profound effect on planets in the jet's path and trigger a burst of star formation in its destructive wake.

Known as 3C321, the system contains two galaxies in orbit around each other. Data from NASA's Chandra X-ray Observatory show both galaxies contain super massive black holes at their centers, but the larger galaxy has a jet emanating from the vicinity of its black hole. The smaller galaxy apparently has swung into the path of this jet.

This "death star" galaxy was discovered through the combined efforts of both space and ground-based telescopes. NASA's Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope were part of the effort. The Very Large Array telescope, Socorro, N.M., and the Multi-Element Radio Linked Interferometer Network (MERLIN) telescopes in the United Kingdom also were needed for the finding.

"We've seen many jets produced by black holes, but this is the first time we've seen one punch into another galaxy like we're seeing here," said Dan Evans, a scientist at the Harvard-Smithsonian Center for Astrophysics and leader of the study. "This jet could be causing all sorts of problems for the smaller galaxy it is pummeling."

Jets from super massive black holes produce high amounts of radiation, especially high-energy X-rays and gamma-rays, which can be lethal in large quantities. The combined effects of this radiation and particles traveling at almost the speed of light could severely damage the atmospheres of planets lying in the path of the jet. For example, protective layers of ozone in the upper atmosphere of planets could be destroyed.

Jets produced by super massive black holes transport enormous amounts of energy far from black holes and enable them to affect matter on scales vastly larger than the size of the black hole. Learning more about jets is a key goal for astrophysical research.

"We see jets all over the universe, but we're still struggling to understand some of their basic properties," said co-investigator Martin Hardcastle of the University of Hertfordshire in the United Kingdom. "This system of 3C321 gives us a chance to learn how they're affected when they slam into something like a galaxy and what they do after that."

The effect of the jet on the companion galaxy is likely to be substantial, because the galaxies in 3C321 are extremely close at a distance of only about 20,000 light years apart. They lie approximately the same distance as Earth is from the center of the Milky Way galaxy.

A bright spot in the Very Large Array and MERLIN images shows where the jet has struck the side of the galaxy, dissipating some of the jet's energy. The collision disrupted and deflected the jet.

Another unique aspect of the discovery in 3C321 is how relatively short-lived this event is on a cosmic time scale. Features seen in the Very Large Array and Chandra images indicate that the jet began impacting the galaxy about one million years ago, a small fraction of the system's lifetime. This means such an alignment is quite rare in the nearby universe, making 3C321 an important opportunity to study such a phenomenon.

It is possible the event is not all bad news for the galaxy being struck by the jet. The massive influx of energy and radiation from the jet could induce the formation of large numbers of stars and planets after its initial wake of destruction is complete.

The results from Evans and his colleagues will appear in The Astrophysical Journal.

Source: NASA

Explore further: Smallest speed jump of pulsar caused by billions of superfluid vortices

add to favorites email to friend print save as pdf

Related Stories

New study outlines 'water world' theory of life's origins

Apr 16, 2014

(Phys.org) —Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed ...

Black hole makes 'String of Pearls' clusters

Apr 01, 2014

(Phys.org) —Huge young star clusters resembling a string of pearls around a black hole in the centre of a galaxy 120 million light-years away have been discovered by researchers at Swinburne University ...

The search for seeds of black holes

Mar 27, 2014

(Phys.org) —How do you grow a supermassive black hole that is a million to a billion times the mass of our sun? Astronomers do not know the answer, but a new study using data from NASA's Wide-field Infrared ...

A new 'fast and furious' black hole

Feb 28, 2014

A black hole with extremely powerful jets has been found in the nearby galaxy Messier 83 (M83) by a team of Australian and American researchers, as we report in the journal Science today. ...

NuSTAR telescope takes first peek into core of supernova

Feb 19, 2014

(Phys.org) —Astronomers have peered for the first time into the heart of an exploding star in the final minutes of its existence. The feat by the high-energy X-ray satellite NuSTAR provides details of the ...

Recommended for you

Cosmologists weigh cosmic filaments and voids

2 hours ago

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

ESO image: A study in scarlet

Apr 16, 2014

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Astronomers: 'Tilt-a-worlds' could harbor life

Apr 15, 2014

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Dec 17, 2007
1 / 5 (3) Dec 18, 2007
"...how they're affected when they slam into something like a galaxy..."

assumptions, assumptions. Looks like a glow discharge, nothing slamming into nothing, just energy exchange going on between structures.
not rated yet Dec 18, 2007
An image of intense collision of energies,espcially that of galaxies...sure, must have an intense effect, even if the affected is just a grain of sand.

More news stories

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Let's put a sailboat on Titan

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn's largest moon, is the only natural satellite known to house a thick atmosphere. ...

Net neutrality balancing act

Researchers in Italy, writing in the International Journal of Technology, Policy and Management have demonstrated that net neutrality benefits content creator and consumers without compromising provider innovation nor pr ...