Newer, simpler fixes restore corroded pipelines

Dec 14, 2007

Researchers are taking the guesswork out of repairing corroded oil and gas pipelines with two recent studies that appeared in the journal Experimental Techniques.

Historically, engineers repairing corroded pipeline segments have not had much guidance in regard to measuring the effectiveness of their choice of repair materials. This is especially true in the case of repair materials for internal defects, which have been difficult to assess. Researcher J.L.F. Freire of the Catholic University of Rio de Janeiro and his colleagues are easing in quantifying the effectiveness of the repair systems with a new approach that models and measures pipes’ strength.

They applied the fiberglass-composite repairs to pipeline tubes with machined defects made to resemble natural corrosion. Using strain gages, they measured the strength of the repairs while pumping pressurized water through the pipes. Their study revealed wide variation in the repair materials’ quality. While one system proved stronger than an unblemished pipe, another was only 25 percent as strong.

“We can use these models and tests to establish standards for repair systems,” Freire said, “and to compare different ones.”

In the second study, researchers found that thin, precurved, steel lamina effectively repair external corrosion without compromising pipes’ elasticity or strength. Lead researcher M.A. Perez Rosas and colleagues at the Department of Mechanical Engineering, PUC-Rio, tested the new steel sheaths on scaled-down piping segments that were pressurized to simulate the flow of oil. Four layers of low-carbon steel or two layers of stronger steel both made the treated pipe segment stronger than the original.

“I would expect the lamina to work well in the field,” Rosas said. “They’re thin, easy to manage, and they eliminate the need for welding.”

Source: Blackwell Publishing Ltd.

Explore further: Using sound to picture the world in a new way

add to favorites email to friend print save as pdf

Related Stories

Graphene proves a long-lasting lubricant

Oct 14, 2014

When trying to design a mechanical system to last as long as possible, scientists and engineers have to find ways of overcoming friction. While researchers have found many materials that help to reduce friction, ...

Seeds to skyscrapers

Jun 25, 2014

Wood is one of the oldest building materials but its use is limited by its properties. With new funding, researchers aim to stretch these properties to an unprecedented degree, creating the means to build ...

Nature must remain at the heart of engineering solutions

Jun 19, 2014

Last week, David Taylor of Trinity College Dublin argued that simply copying nature is no way to succeed at inventing. His main point is valid – there are indeed not many chances for engineers to make a ...

Strengthening carbon fiber for vehicle use

Jun 17, 2014

Lighter-weight, fuel-efficient cars may be closer to reality thanks to Geelong researchers who are giving carbon fibre the gripping power it needs to be able to stand up to impacts from motorists.

Skin with high rust protection factor

Jun 04, 2014

In industrialized countries, corrosion guzzles up to 4 percent of economic performance annually. Substances that protect metals effectively from its ravages are often damaging to the environment or have other ...

Recommended for you

Using sound to picture the world in a new way

7 minutes ago

Have you ever thought about using acoustics to collect data? The EAR-IT project has explored this possibility with various pioneering applications that impact on our daily lives. Monitoring traffic density ...

Sweeping air devices for greener planes

23 hours ago

The large amount of jet fuel required to fly an airplane from point A to point B can have negative impacts on the environment and—as higher fuel costs contribute to rising ticket prices—a traveler's wallet. ...

User comments : 0