Astronomers discover how white dwarf stars get their 'kicks'

Dec 04, 2007

University of British Columbia astronomer Harvey Richer and UBC graduate student Saul Davis have discovered that white dwarf stars are born with a natal kick, explaining why these smoldering embers of Sun-like stars are found on the edge rather than at the centre of globular star clusters.

White dwarfs represent the third major stage of a star’s evolution. Like the Sun, each star begins its life with a long stable state where nuclear reactions take place in the core supplying the energy. After the core fuel is depleted, it swells up and turns into a huge red giant. Later, the red giant ejects its outer atmosphere and its core becomes a white dwarf that slowly cools over time and radiates its stored thermal heat into space.

Using NASA’s Hubble telescope, Richer and his team looked at the position of white dwarfs in NGC 6397, one of the globular star clusters closest to Earth. Globular clusters are dense swarms of hundreds of thousands of stars. About 150 of these clusters exist in the Milky Way, each containing between 100,000 and one million stars.

“The distribution of young white dwarfs is the exact opposite of what we expected,” says Prof. Richer, whose study will appear in the Monthly Notices of the Royal Astronomical Society Letters in January 2008.

Richer explains that globular clusters sort out stars according to their mass, governed by a gravitational billiard-ball game among stars. Heavier stars slow down and sink to the cluster’s core, while lighter stars pick up speed and move across the cluster to its outskirts. The team found that the older white dwarfs were behaving as expected; they were scattered throughout the cluster according to weight.

“Newly-minted white dwarfs should be near the center, but they are not,” says Richer. “Our idea is that when these white dwarfs were born, they were given a small kick of 7,000 to 11,000 miles an hour (three to five kilometers a second), which rocketed them to the outer reaches of the cluster.”

Using computer simulations, Richer and his team showed that when white dwarfs were born, their own mass acts like “rocket fuel” propelling them forward.

“If more of this mass is ejected in one direction, it could propel the emerging white dwarf through space, just as exhaust from a rocket engine thrusts it from the launch pad,” says Richer.

The researchers studied 22 young white dwarfs up to about 800 million years old and 62 older white dwarfs between 1.4 and 3.5 billion years old. They distinguished the younger from the older white dwarfs based on their color and brightness. The younger ones are hotter, and therefore bluer and brighter than the older ones.

Source: University of British Columbia

Explore further: An old-looking galaxy in a young universe

add to favorites email to friend print save as pdf

Related Stories

Exploded star blooms like a cosmic flower

Feb 12, 2015

Because the debris fields of exploded stars, known as supernova remnants, are very hot, energetic, and glow brightly in X-ray light, NASA's Chandra X-ray Observatory has proven to be a valuable tool in studying ...

Image: XMM-Newton and Hubble view of Jupiter's ghost

Feb 02, 2015

Names of astronomical objects are often ambiguous, especially when the historical designation of a certain class of celestial body preceded their physical understanding and was based on their appearance in ...

The strange case of the missing dwarf

Feb 18, 2015

The new SPHERE instrument on ESO's Very Large Telescope has been used to search for a brown dwarf expected to be orbiting the unusual double star V471 Tauri. SPHERE has given astronomers the best look so ...

Stars akin to the Sun also explode when they die

Feb 16, 2015

The birth of planetary nebulae, resulting from the death of low and intermediate mass stars, is usually thought of as a slow process, in contrast with the intense supernovae that massive stars produce. But ...

Recommended for you

An old-looking galaxy in a young universe

3 hours ago

A team of astronomers, led by Darach Watson, from the University of Copenhagen used the Very Large Telescope's X-shooter instrument along with the Atacama Large Millimeter/submillimeter Array (ALMA) to observe ...

Giant methane storms on Uranus

5 hours ago

Most of the times we have looked at Uranus, it has seemed to be a relatively calm place. Well, yes its atmosphere is the coldest place in the solar system. But, when we picture the seventh planet in our ...

Where do stars form in merging galaxies?

7 hours ago

Collisions between galaxies, and even less dramatic gravitational encounters between them, are recognized as triggering star formation. Observations of luminous galaxies, powered by starbursts, are consistent ...

Could the Milky Way become a quasar?

Feb 27, 2015

A quasar is what you get when a supermassive black hole is actively feeding on material at the core of a galaxy. The region around the black hole gets really hot and blasts out radiation that we can see billions ...

Galactic dinosaurs not extinct

Feb 27, 2015

One of the biggest mysteries in galaxy evolution is the fate of the compact massive galaxies that roamed the early Universe.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.