Virtual factory on the tabletop

Dec 03, 2007
Virtual factory on the tabletop
Multi-Touch Tables can be operated intuitively with the fingers by means of multi-touch sensing. The new displays can be used in factories to observe production processes, or in museums to provide visitors with even more instructive information. © Fraunhofer IGD

Many industrial processes involve reactions in places that are difficult to see directly. A novel tabletop touch screen allows hidden sequences of events to be observed in progress. It can be operated intuitively using a combination of fingers and recognizes swiping movements.

A crowd of people is gathered around a large table with an illuminated surface, on which images of a journey through pipes and machines in a factory are being displayed. Users can select individual components by touching the corresponding image with a finger. The objects can be rotated and observed by swiping a finger over them – and the same method can be used to watch a process in slow motion.

By drawing apart their two index fingers on the table surface, users can enlarge the image and zoom in on a detail, such as a bay wheel scooping up hundreds of thousands of plastic granules. The Multi-Touch Table provides a tangible virtual replication of processes that normally take place hidden inside networks of pipes: How does the process work? What are its advantages?

The large, industrial-scale display table was developed by researchers at the Fraunhofer Institute for Computer Graphics Research IGD in Darmstadt. “The table is already being used by the Coperion Group of companies,” relates IGD project manager Michael Zöllner. “It allows customers to observe the entire process chain of plastics manufacturing and processing. They can watch in real time as the granulate flows through the pipes and regulate the speed by swiping a finger over the image.” The researchers worked with colleagues at the Steinbeis Institute Design and Systems on the development of this application.

So how does the touch screen work? Infrared LEDs emit light into the Plexiglas® surface of the display at a horizontal angle. This light is internally totally reflected within the acrylic sheet, which allows none of the light to escape. A finger placed on the surface changes its reflective properties, enabling light to emerge. This light is captured by an infrared camera installed beneath the table. Although the system is based on well-known principles, various challenges still had to be overcome.

“The surface of acrylic sheets is too smooth to resolve finger movements. Our solution was to apply a special coating,” says Zöllner. Another problematic aspect was how to project the images. “To obtain a large, bright, undistorted image, the optical path has to be relatively long – something that is difficult to achieve within the confines of the table below the display. We had to affect the optical path itself, by using mirrors to keep it short,” the research scientist explains. As for the user interface, the researchers made sure that it could be used easily and intuitively. After all, nobody wants to have to follow complicated technical instructions when meeting with customers or visiting a museum.

Source: Fraunhofer-Gesellschaft

Explore further: Fiber-optic microscope will help physicians detect cancer, diseases at early stages

add to favorites email to friend print save as pdf

Related Stories

Pinwheel 'living' crystals and the origin of life

Feb 25, 2014

Simply making nanoparticles spin coaxes them to arrange themselves into what University of Michigan researchers call 'living rotating crystals' that could serve as a nanopump. They may also, incidentally, shed light on the ...

'Oldest star' found from iron fingerprint (Update)

Feb 09, 2014

As the Big Bang's name suggests, the universe burst into formation from an immense explosion, creating a vast soup of particles. Gigantic clouds of primordial soup, made mainly of hydrogen and helium, eventually ...

Lungs may suffer when certain elements go nano

Jan 28, 2014

(Phys.org) —Nanoparticles are used in all kinds of applications—electronics, medicine, cosmetics, even environmental clean-ups. More than 2,800 commercially available applications are now based on nanoparticles, ...

Recommended for you

Smart sensor technology to combat indoor air pollution

Apr 14, 2014

Indoor air quality (IAQ) influences the health and well-being of people but for the last 20 years there has been a growing concern about pollutants in closed environments, the difficulty in identifying them ...

Drones used to assess damage after disasters

Apr 11, 2014

Researchers of the University of Twente use a new method to map structural damage after disasters. A remote-controlled drone with a regular high-quality camera takes a large amount of pictures of a building. ...

User comments : 0

More news stories

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.