Scientists solve cosmological puzzle

Nov 29, 2007
Scientists solve cosmological puzzle
It is a picture of a dwarf galaxy forming one billion years after the Big Bang. The background image shows the large-scale cosmic context (the panel is approximately 100,000 light years across); the inset shows the central 2,000 light years of the dwarf galaxy where powerful feedback from newly born star clusters drives bulk motions in the gas. Stars are shown in yellow; colours from violet to blue to green to white correspond to gas of increasing density. Credit: S. Mashchenko, J. Wadsley, and H. M. P. Couchman

Researchers using supercomputer simulations have exposed a very violent and critical relationship between interstellar gas and dark matter when galaxies are born – one that has been largely ignored by the current model of how the universe evolved.

The findings, published today in Science, solve a longstanding problem of the widely accepted model – Cold Dark Matter cosmology – which suggests there is much more dark matter in the central regions of galaxies than actual scientific observations suggest.

“This standard model has been hugely successful on the largest of scales—those above a few million light-years—but suffers from several persistent difficulties in predicting the internal properties of galaxies,” says Sergey Mashchenko, research associate in the Department of Physics & Astronomy at McMaster University. “One of the most troublesome issues concerns the mysterious dark matter that dominates the mass of most galaxies.”

Supercomputer cosmological simulations prove that indeed, this problem can be resolved. Researchers modeled the formation of a dwarf galaxy to illustrate the very violent processes galaxies suffer at their births, a process in which dense gas clouds in the galaxy form massive stars, which, at the ends of their lives, blow up as supernovae.

“These huge explosions push the interstellar gas clouds back and forth in the centre of the galaxy,” says Mashchenko, the lead author of the study. “Our high-resolution model did extremely accurate simulations, showing that this ‘sloshing’ effect – similar to water in a bathtub— kicks most of the dark matter out of the centre of the galaxy.”

Cosmologists have largely discounted the role interstellar gas has played in the formation of galaxies and this new research, says Mashchenko, will force scientists to think in new terms and could lead to a better understanding of dark matter.

The simulations reported in the research paper were carried out on the Shared Hierarchical Academic Research Computing Network (SHARCNET).

Source: McMaster University

Explore further: Neutrino trident production may offer powerful probe of new physics

add to favorites email to friend print save as pdf

Related Stories

Ultracold atoms juggle spins with exceptional symmetry

Sep 03, 2014

The physical behavior of materials is strongly governed by the many electrons which can interact and move inside any solid. While an individual electron is a very simple object, carrying only mass, electric ...

On the hunt for dark matter

Aug 22, 2014

New University of Adelaide Future Fellow Dr Martin White is starting a research project that has the potential to redirect the experiments of thousands of physicists around the world who are trying to identify the nature ...

Results from CERN presented at ICHEP

Jul 08, 2014

Speaking at press conference held during the 37th International Conference on High Energy Physics, ICHEP, in Valencia, Spain this morning CERN Director General Rolf Heuer gave a resume of results from CERN that are being ...

Recommended for you

Tandem microwave destroys hazmat, disinfects

22 minutes ago

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

2 hours ago

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

seanpu
not rated yet Nov 30, 2007
gas gas gas, all they see is gas! Where's all the plasma gone?
quantum_flux
not rated yet Nov 30, 2007
plasma and gas are sometimes used interchangeably in astronomy. This is exciting.