Probing the nurseries of miniature planetary systems

Nov 21, 2007

New research led by a University of St Andrews astronomer has found evidence for what might be the raw material for the beginning of shrunken versions of our solar system - miniature worlds in the making.

In their study Dr Alexander Scholz, SUPA Advanced Fellow at the University of St Andrews, and Professor Ray Jayawardhana, from the University of Toronto, challenge the assumption that other planetary systems in the Universe would necessarily look like our own solar system.

The astronomers have found that the birthplaces of planets exist not only around young stars but also around planemos (short for planetary mass objects) that are not much larger or heavier than Jupiter. This may imply the existence of miniature solar systems with a central object having only about 1% of the mass of the Sun.

Since their discovery in 2000, the nature and origin of the enigmatic planemos has been a hot topic - are they tiny stars or giant planets, kicked out from a young planetary system? The new study now suggests that the former scenario is much more likely.

In a paper to be published in the Astrophysical Journal (Letters) Dr Scholz and Professor Jayawardhana used the Spitzer Space Telescope to observe 18 planemos in a star cluster in Orion that is about 3 million years old. At that age many young stars are still surrounded by disks of dust and gas which may evolve into planetary systems. The dust in these disks 'glows' in the infrared wavelength range and can therefore be seen with infrared cameras.

The new observations show that about one third of the planemos are also surrounded by dusty disks, thus these relatively small objects seem to have a star-like infancy.

Evidence for a star-like formation of planemos has been presented previously by other teams but the new observations constitute the first systematic survey and push our knowledge of planemos into new territory.

"The results demonstrate that long-lived dusty disks, the nurseries of planets, are commonly found even around extremely low-mass objects. This could indicate that planetary systems may form even when the central 'star' is not a star, but a planemo.

Imagine a solar system where planets encircle an object which itself is not much larger than a planet," explains Dr Scholz.

Although the new findings have not settled the origins of planemos Dr Scholz and Professor Jayawardhana believe the results bring us one step closer.

"How puny an object could nature produce in the same way that it made our Sun? That's the big question motivating our research. The answer will tell us a lot about the star formation process as well as about the true diversity of planetary systems out there," said Professor Jayawardhana.

Source: University of St Andrews

Explore further: Computers beat brainpower when it comes to counting stars

add to favorites email to friend print save as pdf

Related Stories

Baby 'planemos' can be born as twins

Aug 03, 2006

The cast of exoplanets has an extraordinary new member. Using ESO's telescopes, astronomers have discovered an approximately seven-Jupiter-mass companion to an object that is itself only twice as hefty. Both objects have ...

Do 'Planemos' Have Progeny?

Jun 05, 2006

Two new studies, based on observations made with ESO's telescopes, show that objects only a few times more massive than Jupiter are born with discs of dust and gas, the raw material for planet ...

Recommended for you

ESO image: A study in scarlet

21 hours ago

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Astronomers: 'Tilt-a-worlds' could harbor life

Apr 15, 2014

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

Pushy neighbors force stellar twins to diverge

Apr 15, 2014

(Phys.org) —Much like an environment influences people, so too do cosmic communities affect even giant dazzling stars: Peering deep into the Milky Way galaxy's center from a high-flying observatory, Cornell ...

Image: Multiple protostars within IRAS 20324+4057

Apr 14, 2014

(Phys.org) —A bright blue tadpole appears to swim through the inky blackness of space. Known as IRAS 20324+4057 but dubbed "the Tadpole", this clump of gas and dust has given birth to a bright protostar, ...

User comments : 0

More news stories

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Let's put a sailboat on Titan

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn's largest moon, is the only natural satellite known to house a thick atmosphere. ...

New clinical trial launched for advance lung cancer

Cancer Research UK is partnering with pharmaceutical companies AstraZeneca and Pfizer to create a pioneering clinical trial for patients with advanced lung cancer – marking a new era of research into personalised medicines ...

'Chief Yahoo' David Filo returns to board

Yahoo announced the nomination of three new board members, including company co-founder David Filo, who earned the nickname and formal job title of "Chief Yahoo."