Fuel cells gearing up to power auto industry

Oct 30, 2007

The average price for all types of gasoline is holding steady around $2.95 per gallon nationwide, but the pain at the pump might be short-lived as research from the University of Houston may eliminate one of the biggest hurdles to the wide-scale production of fuel cell-powered vehicles.

Peter Strasser, an assistant professor of chemical and biomolecular engineering, led the research team in discovering a method to make a fuel cell more efficient and less expensive. The initiative is one of four ongoing fuel cell projects in development at the Cullen College of Engineering at UH.

A fuel cell converts chemically stored energy directly into electricity and is already two to three times more efficient in converting fuel to power than the internal combustion engine usually found in automobiles.

“A fuel cell is a power generation device that converts energy into electricity with very high efficiencies without combustion, flame, noise or vibration,” Strasser said. “If a fuel cell is run on hydrogen and air, as planned for automotive fuel cells, hydrogen and oxygen molecules combine to provide electricity with water as the only byproduct.”

The key to making a fuel cell work is a catalyst, which facilitates the reaction of hydrogen and oxygen. The most common, but expensive, catalyst is platinum. Currently, the amount of platinum catalyst required per kilowatt to power a fuel cell engine is about 0.5 to 0.8 grams, or .018 to .028 ounces. At a cost of about $1,500 per ounce, the platinum catalyst alone would cost between $2,300 to $3,700 to operate a small, 100-kilowatt two- or four-door vehicle – a significant cost given that an entire 100-kilowatt gasoline combustion engine costs about $3,000. To make the transition to fuel cell-powered vehicles possible, the automobile industry wants something better and cheaper.

“The automobile companies have been asking for a platinum-based catalyst that is four times more efficient, and, therefore, four times cheaper, than what is currently available,” Strasser said. “That’s the magic number.”

Strasser and his team, which includes Ratndeep Srivastava, a graduate student, Prasanna Mani, a postdoctoral researcher, and Nathan Hahn, a 2007 UH graduate, have met and, seemingly, exceeded this “magic number.” The team created a catalyst that uses less platinum, making it at least four times – and up to six times – more efficient and cheaper than existing catalysts at comparable power levels.

“We have found a low platinum alloy that we pre-treat in a special way to make it very active for the reaction of oxygen to water on the surface of our catalyst,” Strasser said. “A more active catalyst means that we get more electricity, or energy, for the amount of platinum used and the time it’s used for. With a material four to six times more efficient, the cost of the catalyst has reached an important target set by industrial fuel cell developers and the U.S. Department of Energy.”

Although more testing of how the durability of this new catalyst compares to pure platinum is necessary, the preliminary results look promising.

“The initial results show that durability is improved over pure platinum, but only longer-term testing can tell,” Strasser said.

Long-term results may take some time, but industry expert Hubert Gasteiger, a leading scientist in fuel research with Aeta S.p.A. in Italy, is already excited.

“The automotive cost targets, which were developed several years ago, require that the activity of the available platinum catalysts would need to be increased by a factor of four to six,” Gasteiger said. “The novel catalyst concept developed by Professor Strasser’s group has been demonstrated to provide an enhancement factor of greater than four, and, thereby, are very promising materials to achieve the platinum metals cost targets of typical hydrogen-oxygen automotive fuel cells. This is a very exciting and new development, even though more work is required to assure that the durability of these novel catalysts is equally superior to the current carbon-supported platinum catalysts.”

Source: University of Houston

Explore further: Lifting the brakes on fuel efficiency

add to favorites email to friend print save as pdf

Related Stories

Building better catalysts for splitting water

Apr 02, 2014

(Phys.org) —The dream of a hydrogen economy—a world run on H2 gas, free from the pollution and politics of fossil fuels—may depend on developing an energy-efficient strategy for splitting water into ...

NREL driving research on hydrogen fuel cells

Mar 25, 2014

Hydrogen fuel cell electric vehicles (FCEV) were the belles of the ball at recent auto shows in Los Angeles and Tokyo, and researchers at the Energy Department's National Renewable Energy Laboratory (NREL) ...

Simulating how the Earth kick-started metabolism

Mar 12, 2014

(Phys.org) —Researchers have developed a new approach to simulating the energetic processes that may have led to the emergence of cell metabolism on Earth – a crucial biological function for all living ...

Big step for next-generation fuel cells and electrolyzers

Feb 27, 2014

A big step in the development of next-generation fuel cells and water-alkali electrolyzers has been achieved with the discovery of a new class of bimetallic nanocatalysts that are an order of magnitude higher ...

Recommended for you

Lifting the brakes on fuel efficiency

19 hours ago

The work of a research leader at Michigan Technological University is attracting attention from Michigan's Governor as well as automotive companies around the world. Xiaodi "Scott" Huang of Michigan Tech's ...

Large streams of data warn cars, banks and oil drillers

Apr 16, 2014

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 0

More news stories

Researchers uncover likely creator of Bitcoin

The primary author of the celebrated Bitcoin paper, and therefore probable creator of Bitcoin, is most likely Nick Szabo, a blogger and former George Washington University law professor, according to students ...

LinkedIn membership hits 300 million

The career-focused social network LinkedIn announced Friday it has 300 million members, with more than half the total outside the United States.

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...