New Massive Black Hole Smashes Record

Oct 30, 2007
Black Hole and Companion Star in IC 10 X-1 System
In this artist's portrayal of the IC 10 X-1 system, the black hole lies at the upper left and its companion star is on the right. The two objects orbit around a center of gravity once every 34.4 hours. The stellar companion is a type known as a Wolf-Rayet star. Such stars are highly evolved and destined to explode as supernovae. The black hole companion is shedding its outer envelope in a powerful wind, and some of this gas is captured by the black hole's powerful gravity. Credit: Aurore Simonnet/Sonoma State University/NASA

Using two NASA satellites, astronomers have discovered the heftiest known black hole to orbit a star. The new black hole, with a mass 24 to 33 times that of our Sun, is more massive than scientists expected for a black hole that formed from a dying star.

The newly discovered object belongs to the category of "stellar-mass" black holes. Formed in the death throes of massive stars, they are smaller than the monster black holes found in galactic cores. The previous record holder for largest stellar-mass black hole is a 16-solar-mass black hole in the galaxy M33, announced on October 17.

"We weren’t expecting to find a stellar-mass black hole this massive," says Andrea Prestwich of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., lead author of the discovery paper in the November 1 Astrophysical Journal Letters. "It seems likely that black holes that form from dying stars can be much larger than we had realized."

The black hole is located in the nearby dwarf galaxy IC 10, 1.8 million light-years from Earth in the constellation Cassiopeia. Prestwich’s team could measure the black hole’s mass because it has an orbiting companion: a hot, highly evolved star. The star is ejecting gas in the form of a wind. Some of this material spirals toward the black hole, heats up, and gives off powerful X-rays before crossing the point of no return.

In November 2006, Prestwich and her colleagues observed the dwarf galaxy with NASA’s Chandra X-ray Observatory. The group discovered that the galaxy’s brightest X-ray source, IC 10 X-1, exhibits sharp changes in X-ray brightness. Such behavior suggests a star periodically passing in front of a companion black hole and blocking the X-rays, creating an eclipse. In late November, NASA’s Swift satellite confirmed the eclipses and revealed details about the star’s orbit. The star in IC 10 X-1 appears to orbit in a plane that lies nearly edge-on to Earth’s line of sight, The Swift observations, as well as observations from the Gemini Telescope in Hawaii, told Prestwich and her group how fast the two stars go around each other. Calculations showed that the companion black hole has a mass of at least 24 Suns.

There are still some uncertainties in the black hole’s mass estimate, but as Prestwich notes, "Future optical observations will provide a final check. Any refinements in the IC 10 X-1 measurement are likely to increase the black hole’s mass rather than reduce it."

The black hole’s large mass is surprising because massive stars generate powerful winds that blow off a large fraction of the star’s mass before it explodes. Calculations suggest massive stars in our galaxy leave behind black holes no heavier than about 15 to 20 Suns.

The IC 10 X-1 black hole has gained mass since its birth by gobbling up gas from its companion star, but the rate is so slow that the black hole would have gained no more than 1 or 2 solar masses. "This black hole was born fat; it didn’t grow fat," says astrophysicist Richard Mushotzky of NASA Goddard Space Flight Center in Greenbelt, Md., who is not a member of the discovery team.

The progenitor star probably started its life with 60 or more solar masses. Like its host galaxy, it was probably deficient in elements heavier than hydrogen and helium. In massive, luminous stars with a high fraction of heavy elements, the extra electrons of elements such as carbon and oxygen "feel" the outward pressure of light and are thus more susceptible to being swept away in stellar winds. But with its low fraction of heavy elements, the IC 10 X-1 progenitor shed comparatively little mass before it exploded, so it could leave behind a heavier black hole.

"Massive stars in our galaxy today are probably not producing very heavy stellar-mass black holes like this one," says coauthor Roy Kilgard of Wesleyan University in Middletown, Conn. "But there could be millions of heavy stellar-mass black holes lurking out there that were produced early in the Milky Way’s history, before it had a chance to build up heavy elements."

Source: Goddard Space Flight Center

Explore further: Hubble, the telescope that revolutionized our view of space

Related Stories

White dwarf may have shredded passing planet

Apr 17, 2015

The destruction of a planet may sound like the stuff of science fiction, but a team of astronomers has found evidence that this may have happened in an ancient cluster of stars at the edge of the Milky Way ...

Giant galaxies die from the inside out

Apr 16, 2015

A major astrophysical mystery has centred on how massive, quiescent elliptical galaxies, common in the modern Universe, quenched their once furious rates of star formation. Such colossal galaxies, often also ...

Video: How do black holes evaporate?

Apr 14, 2015

Nothing lasts forever, not even black holes. According to Stephen Hawking, black holes will evaporate over vast periods of time. But how, exactly, does this happen?

Flip-flopping black holes spin to the end of the dance

Apr 09, 2015

When black holes tango, one massive partner spins head over heels (or in this case heels over head) until the merger is complete, said researchers at Rochester Institute of Technology in a paper published ...

Recommended for you

Radio astronomy backed by big data projects

41 minutes ago

As the leading edge of the Square Kilometre Array (SKA) project, the Murchison Widefield Array (MWA) radio telescope is at the forefront of the big data challenges facing radio astronomy, presenting and solving ...

Black hole hunters tackle a cosmic conundrum

18 hours ago

Dartmouth astrophysicists and their colleagues have not only proven that a supermassive black hole exists in a place where it isn't supposed to be, but in doing so have opened a new door to what things were ...

Image: Thor's Helmet nebula in the X-ray spectrum

Apr 20, 2015

This brightly coloured scene shows a giant cloud of glowing gas and dust known as NGC 2359. This is also dubbed the Thor's Helmet nebula, due to the arching arms of gas stemming from the central bulge and ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

legendmoth
1 / 5 (1) Oct 30, 2007
I am going to reveal my ignorance with this question: I thought stars went supernova or nova when they had used up all of their lighter elements. Why would the progenitor star explode if it did not contain a high percentage of heavy elements?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.