Bone-growing nanomaterial could improve orthopaedic implants

Sep 17, 2007
Growing Nanotubes on Titanium
Anodized titanium covered by carbon nanotubes could lead to a new material for orthopedic implants. Credit: Sirinrath Sirivisoot/Brown University

For orthopaedic implants to be successful, bone must meld to the metal that these artificial hips, knees and shoulders are made of. A team of Brown University engineers, led by Thomas Webster, has discovered a new material that could significantly increase this success rate.

The team took titanium – the most popular implant material around – and chemically treated it and applied an electrical current to it. This process, called anodization, creates a pitted coating in the surface of the titanium. Webster and his team packed those pits with a cobalt catalyst and then ran the samples through a chemical process that involved heating them to a scorching 700° C. That caused carbon nanotubes to sprout from each pit.

Researchers then placed human osteoblasts, or bone-forming cells, onto the nanotube-covered samples as well as onto samples of plain and anodized titanium. The samples were placed in an incubator. After three weeks, the team found that the bone cells grew twice as fast on the titanium covered in nanotubes. Cells interacting with the nanotubes also made significantly more calcium – the essential ingredient for healthy bones.

Results are published in Nanotechnology.

“What we found is possibly a terrific new material for joint replacement and other implants,” said Webster, associate professor of engineering at Brown. “Right now, bone doesn’t always properly meld to implants. Osteoblasts don’t grow or grow fast enough. Adding carbon nanotubes to anodized titanium appears to encourage that cell growth and function.”

Webster’s long-term vision for the new material is ambitious. With it, Webster hopes to create a new class of implants – ones that can sense bone growth then send that information to an external device. Doctors could monitor the output and determine whether to inject growth hormones or otherwise intervene to avoid additional surgery. Right now, implant patients must get an X-ray or undergo a bone scan to monitor bone growth.

Webster thinks these “biosensing” implants could even be designed to detect infection and be specially coated to release antibiotics or other drugs into the body.

Webster said the biosensing concept would work because when cells make calcium, an electrical current is created. That current can be conducted through carbon nanotubes and transmitted via radio frequency to a handheld device outside the body – a similar process to the one employed by state-of-the-art cardiac pacemakers.

“This technology would be incredibly exciting,” Webster said. “It could significantly improve patient health – and cut down on expensive diagnostic tests and surgery. We still have a long way to go to make an intelligent implant a reality, but our new results are a strong first step.”

Source: Brown University

Explore further: New nanodevice defeats drug resistance

add to favorites email to friend print save as pdf

Related Stories

World's wildlife critical to the economies of nations

43 minutes ago

Wildlife is critical to the economies of nations. New Zealand's wildlife – whales, dolphins, red deer, thar, albatross, kiwi, tuatara, fish and kauri – attract tourists. And the tourists who come to see ...

Road safety through snowflake imaging

43 minutes ago

The technology behind the camera that revealed the intricate, imperfect beauty of snowflakes can now expose their potential danger.

Modern methods lead the way toward a rhino rebound

53 minutes ago

Cutting-edge technology and techniques have become essential tools in the effort to save rhinos. Micro chips, translocation and consumer campaigns are helping shift the balance against record-setting poaching ...

Recommended for you

Electrons moving along defined snake states

14 hours ago

Physicists at the University of Basel have shown for the first time that electrons in graphene can be moved along a predefined path. This movement occurs entirely without loss and could provide a basis for ...

New nanodevice defeats drug resistance

Mar 02, 2015

Chemotherapy often shrinks tumors at first, but as cancer cells become resistant to drug treatment, tumors can grow back. A new nanodevice developed by MIT researchers can help overcome that by first blocking ...

Glass coating improves battery performance

Mar 02, 2015

Lithium-sulfur batteries have been a hot topic in battery research because of their ability to produce up to 10 times more energy than conventional batteries, which means they hold great promise for applications ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.